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Abstract

The paper considers the problem of learning classes of graphs closed under taking
minors. It is shown that any such class can be properly learned in polynomial time
using membership and equivalence queries. The representation of the class is in terms
of a set of minimal excluded minors (obstruction set).

Introduction

This paper considers the problem of identifying a very broad series of classes of graphs,
namely those closed under taking graph minors. Such sets of graphs have been studied
for a number of years by graph theorists, most notably in a series of papers by Robertson
and Seymour (see for example among other papers [10, 12, 11, 14, 13]). The classes of
graphs that are closed under taking minors are very common. Examples are the planar
graphs, graphs which can be embedded in 3-dimensional space without knots, graphs which
can be embedded in 3-dimensional space without interlocking cycles, graphs with genus,
treewidth, pathwidth at most some fixed constant k, etc. In some cases there are no known
algorithms for testing for membership in these classes, though the general theory of graph
minors ensures that such algorithms must exist. One way of viewing our results is a general
method of learning such algorithms.

The key result obtained by Robertson and Seymour showed that for any class of graphs
closed under taking minors, there is a finite set of minimal minors not in the class. This set
is called the obstruction set of the class. Any such class can therefore be characterised as
the set of graphs which do not contain any member of the obstruction set as a minor. For
the example of planar graphs the obstruction set consists of the two non-planar graphs, K
and K3 3. Hence, in this case the result is equivalent to the famous Kuratowski theorem
that a graph is planar if and only if it does not contain one of these two graphs as a minor.
In general there are no efficient algorithms for computing the obstruction set of a class of
graphs, and in some cases of interest (e.g. the set of graphs embeddable in 3-space such
that no cycle forms a knot) the obstruction set is not yet known.

This paper shows that any graph class that is closed under taking minors can be iden-
tified using the learning protocol of equivalence and membership queries. The learning
algorithm delivers the obstruction set of the class using a number of queries that is polyno-
mial in the size of the minimal representation and the size of the largest counterexample.

Once the obstruction set has been constructed, there are well developed algorithms for
deciding whether a given graph has a member of the obstruction set as a minor. These
algorithms are at worst cubic in the number of vertices in the graph, but exponential in
the size of the obstruction set. Hence, the representation fails to be polynomially evaluable
in its own size but, once it is fixed, is polynomially evaluable in the size of the graph which
is being evaluated. This technical point will not be relevant to our learning algorithm,
since we will not need to evaluate the representations on any examples. In summary, our
learning algorithm uses membership and equivalence queries to “learn” an algorithm that
is known to exist, but which we do know how to build.

The notion of query learning was introduced by Angluin in 1987 [1]. In that paper
she proved the first and strong positive result, namely that the class of regular languages
represented by deterministic finite automata are learnable in polynomial time using mem-
bership and equivalence queries. Many other positive results have been proved in this
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model. For instance, restricted classes of grammars, restricted classes of boolean formulas,
some geometrical concepts, etc are query learnable.

On the other hand, there exists many negative results either in terms of the number of
queries needed or the set of queries allowed. The paper [3] introduced the concept of an
approximate fingerprint, which provides a general technique for proving negative results
in query learning. More recently, there has been an increasing number of negative results
proved using tools from the field of structural complexity. All these results can be found
in the recent surveys [4, 5].

Our algorithm is interesting in the sense that it uses the queries to produce a represen-
tation for a concept that we do not know how to build otherwise, even if we are given an
algorihm that effectively decides the concept.

In the next section we will review the definitions and results of the theory of graph
minors and of learning theory that we will need. This will lead into Section 3 containing
our main results. Finally, the conclusion indicates how the results can be generalised and
highlights questions that remain unresolved.

2 Definitions and Known Results

A graph G comprises a set of nodes VG and a set of edges EG C VG x VG, which is
symmetric and antireflexive. We say that a graph H is a one-step minor of a graph G,
denoted H <; G, if H is obtained from G by one of the following operations:

1. deletion of one edge;
2. by deletion of one vertex together with all edges incident with the vertex; or

3. by identifying two adjacent vertices into a single vertex, that is adjacent to all the
vertices adjacent to either of the two identified vertices.

The minor relation (denoted <) is the transitive reflexive closure of the relation <.

A class of graphs G is minor closed if G € G and H < G imply that H € G. A graph
property P is minor closed if the class of graphs having property P is minor closed.

For a minor closed class of graphs G, the obstruction set of G, denoted ob(G), is the set
of minimal elements in the relation < in the complement of G. Hence, for each graph G,
G € G if and only if there is no H € ob(G) that is a minor of G.

Robertson and Seymour proved Wagner’s conjecture that for every minor closed class

of graphs, the obstruction set is finite. Their theorem states.

Theorem 1 [7] For every minor closed class of graphs G the obstruction set ob(G) of G
s finite.

Corollary 2 Every minor closed class of graphs is decidable.

In fact the situation is much better than being simply decidable. Efficient algorithms
have been devised for testing whether a fixed given graph is a minor of a graph G, which
are polynomial in |G|.

Theorem 3 [7] For every graph H, there exists an O(n®) algorithm, that given a graph
G, tests whether H s a minor of G.
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Corollary 4 Given the obstruction set ob(G) of a minor closed class of graphs G, we can
test whether a graph G is a member of the class in O(|G|®) time.

In the case of classes that do not contain all planar graphs, this complexity can be
improved using results about graphs of bounded treewidth [7].

Proposition 5 Given the obstruction set ob(G) of a minor closed class of graphs G that
does not contain all planar graphs, we can test whether a graph G is a member of the class

wn O(|G]) time.

In this paper we follow the learning framework defined by Watanabe [15] and extended
in [16]. In order to specify our learning problem we have to determine both a concept space
and a way of representing the concepts. The formal object known as a representation class
is, informally, a set of valid representations R, a semantic function from R to the concept
space and a size function to measure a given representation. We will not give more details
here since our work is centered in one particular representation class.

Throughout the paper we will work with the class of concepts G of graphs closed under
taking minors. We can represent a class G in two ways:

¢ by a finite set of minimal excluded minors. We call this representation class R},;

o by a formula in Monadic Second Order Logic. We denote this representation class
Eumsor, [7)-

Clearly, both representation are mapped into the concept class G but the second one
appears to be much more powerful. In our algorithm we will work with the first one. The
representation of the classes of graphs closed under taking minors will thus be in terms of
their obstruction set. Hence, we consider the finite sets of graphs which form an antichain
in the ‘is a minor’ relation. The corresponding class of graphs is obtained by taking the
complement of the set of graphs which have at least one graph from the set as a minor.

Further, we will denote by ob(G) € R}, the target concept that our Learner is trying
to discover.

When we are talking about query learning, we need to define the communication pro-
tocol between the Teacher and the Learner. A protocol is a set of queries. We will use just
one protocol, which is the most common one. Our protocol has two queries, equivalence
and membership, defined as follows.

o An equivalence query presents an Obstruct € R}, (which we call a “conjecture”)
to the Teacher who replies “True” if it is equivalent to the target concept ob(G), or
“False”, together with a counterexample, i.e. a graph which is classified differently
by Obstruct and ob(G).

¢ A membership query presents a graph G to the Teacher, who indicates whether or
not G is in the concept represented by ob(G).

Thus, we will say that the class R, is learnable in polynomial time using membership and
equivalence queries if there exists an algorithm § that learns any ob(G) € R}, from any
Teacher T in time bounded polynomially in the size of the representation and the length
of the longest counterexample given by T'.
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3 Learning minor closed classes
The main result of this paper can now be stated.

Theorem 6 Let G be a minor closed class of graphs. The obstruction set of G can be
constructed in polynomial time using membership queries bounded by the size of the largest
counterezample and one equivalence query for each graph in the obstruction set.

Proof: The algorithm which identifies the obstruction set is as follows. Note that the
algorithm is always working with an obstruction set which is too small and so has a
hypothesis class which is too big. Hence the equivalence queries always deliver a negative
counterexample. In addition, when added to the set Obstruct, it is a minimal member
of the complement of G in the minor relation. Hence, Obstruct is always a subset of the
complete obstruction set.

Obstruct := {I};
While Not EquivalenceQuery(Ubstruct, CounterExample) Do Begin
/* CounterExample is the negative counterexample returned by
the equivalence query */

Repeat
Minors := OneStepMinors(CounterExample);
/* Minors is the set of minors obtained from CounterExample
by one step e.g. one edge deletion, etc. */
Smaller := False;
Repeat

Select G from Minors;
If MembershipQuery( G ) Then
/* i.e. G is a positive example */

Minors := Minors - { G }
Else Begin

CounterExample := G;

Smaller := True;

End;
Until Smaller Or (Minors = {3});
Until Not Smaller;
Obstruct := Obstruct + { CounterExample };
End;
Return ( Obstruct );

Observe that if the graph G < H with G # H € Obstruct, we must necessarily have G € G,
since G ¢ G would imply that H was not minimal in the complement of G. We will prove by
induction that at every stage the set formed by the set ObstructU{CounterExample} form
an antichain in the relation <, which represents a class G(0Obstruct U {CounterExample})
which contains the class G. This is certainly true at the start of the algorithm, since G(0) is
the class of all graphs. Assume that it is true at some later iteration of the loop. If the equiv-
alence query succeeds, then the algorithm has successfully identified the obstruction set. If
it fails the counterexample CounterExample generated must be a negative example, since
we have G(0Obstruct) O §. Hence also Obstruct U {CounterExample} form an antichain



Conclusions 6

in the relation <, since G > H € Obstruct implies CounterExample ¢ G(0Obstruct), while
G < H € 0Obstruct implies G € G by the observation above. The other stage at which
CounterExample is updated is in the inner loop after a membership query fails on a graph
G which is a one step minor of CounterExample. Since Obstruct U {CounterExample}
formed an antichain and G < CounterExample, no element of Obstruct is a minor of G.
Similarly, G < H € Obstruct implies G € G by the observation. It follows that the set
ObstructU{G} also forms an antichain. But as G ¢ G we also have G(ObstructU{G}) D G
as required.

In order to estimate the complexity of the algorithm, note that each iteration of the
outer loop extends the set Obstruct by one element, and so the number of iterations is
equal to the number of elements in the obstruction set. For each new counterexample, each
execution of the the inner loop reduces its size by either one edge, or at least one vertex.
Hence the number of iterations of that loop is linear in the size of the counterexample.
Finally, the innermost loop is executed a number of times that is at most equal to the
size of the counterexample. Hence, the time complexity of the two inner loops is at most
quadratic in the size of the counterexample. By being more selective about the one step
minors considered and taking into account that if an edge/vertex cannot be deleted at one
step the same edge/vertex cannot be deleted at the next, these two inner loops can be
made to run in time linear in the size of the counterexample. n

Corollary 7 The class of all classes of graphs that are closed under taking minors can be
learned using equivalence and membership queries.

Proof: By the theorem, we can use the equivalence and membership queries to construct
the obstruction set of the class, which is thus uniquely identified. n

Note that the obstruction set can then be used to determine membership of a given
graph G in the class, in time that is O(|G|?®), by Corollary 4. Further by Proposition 5, the

test for membership can be made in O(|G|) time, if the class does not contain all planar
graphs.

4 Conclusions

Our results show that the learning protocol of membership and equivalence queries can
be used to construct the obstruction set of a class of graphs closed under taking minors
using time polynomial in the size of the obstruction set and the length of the longest
counterexample. There are no known efficient algorithms for constructing the obstruction
set even for simply defined classes. The algorithm can therefore also throw light on this
open problem.

Once constructed the obstruction set makes it possible to check membership in the class
in time polynomial in the size of the input graph. Indeed, if the class does not contain all
planar graphs, the membership test can be performed in linear time using results concerning
graph treewidth. Hence, if we have an efficient algorithm for testing membership in the
class, we could construct a probably approximately correct obstruction set by simulating
equivalence queries using a number of randomly chosen graphs. If they were all found to
be correctly classified by the obstruction set so far obtained, we would be confident that
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future examples would be correctly classified by the given construction set. If on the other
hand a graph was obtained that was incorrectly classified, we could use it in our algorithm
as the graph returned by the equivalence query. This simulation technique is a standard
method for reducing a pac learning problem to one using equivalence queries.

The results presented here can be generalised to any other partial order < on graphs as
long as the defined class contains a finite number of obstructions, the number of immediate
predecessors in the ordering is polynomial in the size of the graph and as long as we can
check for any fixed H and an arbitrary G whether H < G in time polynomial in |G|.
Examples of such partial orders are the immersion order and more generally the so-called
Robertson and Seymour posets [8].

Note also that we do not need to restrict ourselves to graphs. Consider the set of all
binary n-bit strings with the ordering being the monotonicity ordering. A string s can
be characterised by monomial m(s) containing the 1 coordinates. The set of strings ¢
satisfying s < ¢ in the ordering are precisely those satisfying the monomial m(s). Hence,
the set of strings determined by an obstruction set S are those satisfying the negation of
the disjunctive normal form

\/ m(s).

s€S

In this case Theorem 6 is the well-known result that monotone DNF formulae can be
learned using membership and equivalence queries in time that is polynomial in the number
of terms in the formula and the parameter n (the size of all counterexamples) [2].

One might be tempted to conjecture that all classes that can be learned by equivalence
and membership queries satisfy this poset property. The poset structure would be defined
in terms of the expressive power of the class H of functions considered. Hence, for inputs
z and y, we would define

z2ye f2)=0= f(y) =0,

for all f € ‘H. A counterexample to this conjecture is provided by the languages recognised
by DFA’s, since for any pair of strings z, y there exist DFA’s A and B, such that A(z) =
0 = B(y) and A(y) = 1 = B(z). Hence,  and y are not in the relation <, which is thus
the identity relation. This means that every string not in a language has to be specified
which in turn implies that the obstruction set is not always finite.

Some other classes of functions satisfying the poset structure have been proved to be
learnable only with membership queries, as read-once monotone formulas [6] or 2-monotonic
positive boolean functions [9]. However, in our case equivalence queries seem essential for
our algorithm as well as membership queries.

As we pointed out before, the representation class chosen is crucial for the learnability
since the Learner has to find the correct representation. Taking as examples the regular
languages, we know they are learnable if they are represented as Deterministic Finite
Automata [1]. However, the same result probably does not hold if we represent them
either as a Non Deterministic Automata or as a Regular Expression.
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