
Visualizing Massive Multi-Digraphs
James Abello Jeffrey Korn

Information Visualization Research
Shannon Laboratories, AT&T Labs-Research
fabello,jlkg@research.att.com

Abstract

We describe MGV, an integrated visualization and exploration sys-
tem for massive multi-digraph navigation. MGV’s only assumption
is that the vertex set of the underlying digraph corresponds to the
set of leaves of a predetermined tree T . MGV builds an out-of-core
graph hierarchy and provides mechanisms to plug in arbitrary visual
representations for each graph hierarchy slice. Navigation from one
level to another of the hierarchy corresponds to the implementation
of a drill-down interface. In order to provide the user with naviga-
tion control and interactive response, MGV incorporates a number
of visualization techniques like interactive pixel-oriented 2D and
3D maps, statistical displays, multi-linked views, and a zoomable
label based interface. This makes the association of geographic
information and graph data very natural. MGV follows the client-
server paradigm and it is implemented in C and Java-3D. We high-
light the main algorithmic and visualization techniques behind the
tools and point out along the way several possible application sce-
narios. Our techniques are being applied to multi-graphs defined
on vertex sets with sizes ranging from 100 million to 250 million
vertices.

Keywords: visualization, massive data sets, graphs, hierarchies,
out-of-core algorithms.

1 Introduction

Processing, querying, exploring and visualizing massive data sets
poses a series of interesting computational and visual challenges.
A variety of these data sets can be modeled as very large but sparse
multi-digraphs with a special collection of application dependent
edge attributes. Geographic information systems, telecommunica-
tions traffic and internet data are prime examples of the type of data
our system is targeted to handle.

Sheer size is the first fundamental issue that needs to be ad-
dressed when the data to be dealt with is considered massive. In
our case, for one of the data sets, we receive a stream of about 275
million records daily yielding about 450GBytes per month. Hav-
ing access to several SGI Origin-2000 servers, 5 terabytes of disk
and an SGI Onyx connected to a 5120 � 2048 power wall certainly
helps in the processing but it does not circumvent two important
bottlenecks: I/O bandwidth and screen real estate.

The I/O bottleneck is caused by the substantial difference be-
tween CPU speeds and external memories. Algorithms whose per-
formance is stated in terms of not just the input size, N , but also in
terms of the size of main memory, M and of the disc block transfer
size, B, are called external memory algorithms1. With this frame-
work in mind, the first requirement for a data set to be considered
massive is that its size (N) must be larger than the size of available
RAM (M). In the case of multi-digraphs, N is essentially O(jEj)
where jEj is the number of edges of the underlying graph.

1See J. Abello and J. Vitter [10] for a recent review of this subject.

An intermediate case, quite relevant in practice, occurs when the
set of vertices fits in RAM but not the edge set (this is called the
semi-external case in [6]). The justification for this model relies on
the increased availability of large RAMs. For example, the essential
information associated with 250 million vertices fits nicely in 2GBs
of RAM. In this case, in principle, one can process any secondary
storage multi-digraph with vertex set up to this size.

The screen bottleneck is caused by the simple fact that the
amount of information that can be displayed at once is ultimately
limited by the number of available pixels and the speed at which the
information is digested by a user. Even though a large number of
pixels diminishes the screen bottleneck, it does not help the user’s
visual processing abstraction unless the display metaphor incorpo-
rates some global data set semantics. Luckily, a variety of massive
multi-digraphs are implicitly defined on vertex sets that correspond
to the leaves of a predefined hierarchy T . When we can induce such
a hierarchy we can use it to guide the exploration and visualization
of the data set. This is done by defining an inherited equivalence re-
lation on the multi-digraph edge set (see Section 2). The hierarchy
makes it possible for a user to digest one manageable portion of the
data at a given time.

In order to deal in a unified manner with both the I/O and the
screen bottlenecks, we base our work on a metaphor called hier-
archical graph slices. The main idea is to build a hierarchy of
multi-digraph layers on top of the input multi-graph. Each layer
is obtained by coalescing disjoint sets of vertices at a previous level
and aggregating their corresponding weighted edges. A collection
of edges in a layer whose aggregation produces an edge at the next
higher layer is called an edge slice. Several “natural” operations
provide hierarchical browsing. Each edge-slice is small enough to
be represented visually in a variety of ways, such as a 2D needle-
grid, a 2D star-grid or star-map, a 2D surface in R3 or a conven-
tional graph drawing. Slices have different properties depending
on their depth, as shown in Figure 1. Slices at a greater depth are
represented by more pixel hungry representations. Representations
can be chosen automatically based on properties of the data, or can
be plugged in manually by a system user.

Many of our visualizations depart strongly from the conventional
visual graph representation that draws graphs as nodes and edges,
unless the slice being considered is very sparse and defined on a
very small number of vertices and edges. In our hierarchical decom-
position, when facing a dense subset of edges, we use adjacency
matrix based visualizations since they are likely easier to digest.
Conventional graph representations like the one shown in Figure 2
are of very limited use for the range of sizes being considered in
this work. This paper presents new techniques that are particularly
helpful in visualizing dense slices.

When a hierarchy T is fixed, the corresponding graph-layers can
be updated incrementally. They are suitable for the processing, nav-
igation and visualization of external memory graphs [6] whose ver-
tex sets are hierarchically labeled.

A by-product of the hierarchical graph-slices metaphor is that
a commercial relational database can be used to query the multi-
digraph hierarchy with very little extra effort. Also, hierarchical

Proceedings of the IEEE Symposium on Information Visualization 2000 (InfoVis'00)
0-7695-0804-9/00 $10.00 @ 2000 IEEE

complete/
dense

semi-sparse

sparse

H
ie

ra
rc

hy

Orig
in

al
G

ra
ph

In
du

ce
d

Le
ve

l

Figure 1: Graph layers. Layers in deeper levels tend to be
sparser.

n0

n1

n2

n3

n4

n5

n6

n7

n8

n9

n10

n11

n12

n13

n14

n15

n16

n17

n18

n19

Figure 2: Traditional nodes-and-edges representation of a
fully connected graph with 20 nodes.

graph-slices are amenable to distributed visual exploration.
Our current prototype (termed Massive Graph Visualizer) is a

system with the following highlights:

� It handles hierarchical views of massive multi-digraphs.

� It consists of a C-computational engine (server) and a Java-3D
visualizer (client), which may reside on separate machines.
In fact, the visualizer can run on multiple desktops allowing
different users to navigate a massive data set independently.

� It provides a drill-down zoom-able interface together with a
collection of multi-linked views.

� Context is maintained by using multiple cameras. One pro-
vides an overview and the others trail each other depending
of a user specified zooming interval. A persistent history of
previous navigations of the hierarchy is maintained.

� In the case of geographical data, displays such as the star-map
(Section 4.2) allow the superposition of graph neighborhood
information on a given geography. This offers an alternative
to the conventional approach of explicitly drawing the edges
among specified positions on a given map.

� Visual aggregation can be obtained by special views, such as
our multi-comb view (Section 4.3) or by an adaptation of the
circle of segments technique [3].

� Users can plug-in alternative visualizations of the hierarchical
graph slices, and can apply their own filters to the slices.

1.1 Related Work

The work presented here grew out of the graph surfaces metaphor
presented in [9]. The primary difference is that 2D surfaces are
not easy to refine locally. By choosing different representations for
the higher levels of the hierarchy we get very fast local refinement,
a very intuitive visual aggregation operation and visually pleasant
animations of data set evolution.

The vertex set of our hierarchy is a super-set of the vertex set of
the underlying multi-digraph. This makes our approach quite dif-
ferent than other graph visualizations based on spanning trees of
the underlying graph (see Munzner [16], Wills [8]). The use of hi-
erarchies for the exploration of large graphs is explicitly mentioned
in [7]. Our work can be viewed as an automation of these ideas
that provides a uniform overall view of massive graph data together
with scalable, efficient and flexible visual navigation tools.

The layout of the paper is as follows. In Section 2, we discuss
graph slices, the main elements of the computational engine, and
its fundamental operations and I/O performance. In Section 3, we
discuss the correspondence between the slice hierarchy and the dif-
ferent visual representations. The components of the Java-3D visu-
alizer and the main interface issues are the contents of Sections 4
and 5. Section 6 points out some future research directions.

2 Hierarchical Graph Slices

In order to handle very large graphs, a hierarchy of multi-digraph
layers is constructed. Each layer represents a multi-digraph ob-
tained from an equivalence relation defined on the edge set of the
input multi-graph. Each layer edge represents an equivalence class
of edges at the previous layer. Each such equivalence class consti-
tutes what we call an edge-slice. Zooming operations are provided
that allow the user to explore the graph slice hierarchy in a fluid
manner.

We introduce these concepts more formally next. Figure 3 illus-
trates our definitions.

2.1 Definitions

� For a multi-digraph G, let V (G) and E(G) denote the set of
vertices and edges ofG respectively. It is assumed that a func-
tion m : E ! N assigns to each edge a non-negative multi-
plicity. With these conventions a multi-digraph is a triplet G
= (V; E;m).

� For a rooted tree T , let Leaves(T) = set of leaves of T .
Height(T) = maximum distance from a vertex to the root of
T ; T (i) is the set of vertices of T at distance i from the root
of T . For a vertex x 2 T , let Tx denote the subtree rooted at
x. Vertices p and q of a rooted tree T are called incomparable
in T if neither p nor q is an ancestor of the other.

� Given a multi-digraph G = (V;E;m) and a rooted tree T such
thatLeaves(T) = V (G), the multiplicity of a pair of vertices
p and q of T is m(p; q) =

P
(x;y)2E(G)

m(x; y) for x 2

Leaves(Tp) and y 2 Leaves(Tq): An incomparable pair
(p; q) is called a multi-edge when m(p; q) is greater than zero.
When both p and q are at the same distance from the root
of T , the multi-edge is called horizontal. A non-horizontal

Proceedings of the IEEE Symposium on Information Visualization 2000 (InfoVis'00)
0-7695-0804-9/00 $10.00 @ 2000 IEEE

Tp Tq

Slice

La
ye

r

……... ……...

p qHorizontal Edge

Root(T)

Leaves(T) = V(G)

Non-horizontal Edge

∈ E(G)
Primary Edge

……... ……...

Figure 3: Hierarchical Graph Decomposition

multi-edge between vertices p and q where p is a leaf and
Height(q) > Height(p) is called a primary crossing multi-
edge.

Notice that a horizontal multi-edge (p; p;m(p; p)) represents
the subgraph of G induced by Leaves(p) and m(p; p) is its
aggregated multiplicity.

� For G and T as above, the hierarchical graph decomposition
of G, given by T , is the multi-digraph H(G; T) with vertex
set equal to V (T) and edge set equal to the edges of T union
the multi-edges running between incomparable pairs of T .

Because H(G; T) contains a very large collection of multi-
edges that can be computed from the horizontal and primary
crossing multi-edges as defined above, we take the approach
of maintaining just these multi-edges and computing the re-
maining ones on demand. This sub-multigraph is denoted by
LH(G; T). LH(G;T) can be viewed as a collection of lay-
ers representing an equivalence relation on E(G). Each layer
contains horizontal multi-edges only. The primary crossing
multi-edges indicate inter-layer data relations. It is precisely
this layered view of a graph what allow us to explore it visu-
ally.

� For G and T , as above, the i-layer of G is the multi-digraph
with vertex set T (i) and all the corresponding horizontal
multi-edges.

� For a multi-edge (x; y) of an i-layer its edge-slice is the sub-
multigraph of the (i+1)-layer whose nodes are the children of
x union the children of y, and whose multi-edges are those in
the (i+1)-layer running between these nodes.

� A good mental picture of what the definitions convey is that
each multi-edge (p; q) has below it a hierarchy of edge-slices
where each level represents an aggregation of previous levels
and where the bottom most level is the subgraph of G with
vertices Leaves(Tp) union Leaves(Tq) and edges of G run-
ning between them. This is the justification for naming this
section Hierarchical Graph Slices.

2.2 Constructing LH(G; T)

The procedure Construct LH(G; T), presented in [9], takes as in-
put a stream of edges representing a multi-digraph G and a rooted
tree T such that Leaves(T) = V (G). It returns as output, a disk
resident, multi-level index structure to the edges of LH(G; T).

Lemma 1. LH(G; T) can be constructed in time
O(jV (G)j �Height(T) + jE(G)j)

in a bottom-up fashion [9, 12]. Space requirements are similar,
making LH(G; T) an efficient data structure to use for our visu-
alization system.

Because LH(G; T) is really T plus the collection of layers of
G given by T , we can think of each layer as being represented by
a two dimensional grid and T as a road map to navigate the slice
hierarchy.

2.3 Handling the I/O bottleneck

When G is an external memory graph residing on disk there are
three cases to consider: (1) T fits in main memory, (2) T does not
fit but V (G) does, and (3) V (G) does not fit. The first two cases
correspond to what is called the semi-external version and the third
one is referred to as fully external. We center our discussion in the
first two cases since they suffice for our applications. The third case
is not fully understood yet and its solution may take something of a
breakthrough both at the algorithmic and at the systems level. In the
first case, the edges of G are read in blocks and each one is filtered
up through the levels of T until it lands in its final layer. This can
be achieved with one pass.

In the second case, a multilevel external memory index structure
is set up to represent T as a parent array according to precomputed
breadth first search numbers. Filtering the edges through this ex-
ternal representation of T can be done in no more than Height(T)
scans over the data.

As pointed out in the introduction, the increased availability of
large RAMs makes it realistic to assume that the vertex set fits in
main memory. With multi-gigabyte RAMs being a reality and using
our approach, one can process in principle any secondary storage
multi-digraph defined on hundreds of millions of vertices.

Proceedings of the IEEE Symposium on Information Visualization 2000 (InfoVis'00)
0-7695-0804-9/00 $10.00 @ 2000 IEEE

2.4 Navigating the Hierarchy

The condition that Leaves(T) = V (G) guarantees that every T (i)
determines a partition of V (G) with every higher level being just a
partial aggregation of this partition. This implies in turn that from
any given layer one can move to any of the adjacent layers by par-
tial aggregation or by refinement of some sets in the correspond-
ing partition. This is precisely the information that is encoded in
LH(G; T). Namely, from any given multi-edge e in LH(G; T)
one can obtain the set of edges in G that are represented by e. This
is the only operation that is needed to navigate since vertices in T
can be easily replaced by their children by just following the tree
edges. Non-primary crossing edges between non-leaves of the tree
can be expanded by using the basic operations defined below. The
I=O complexity is proportional to the difference in height between
the two end points.

The main navigational operations used by the computational en-
gine are:

� Replacement: Given a vertex u in T , replace(u) substi-
tutes u by its children. This can be implemented by gener-
ating edges f(u; ui) : ui is a child of u in Tg and vertices
children(u).

� Vertex zoom: Given a vertex u in T with children
u1; u2; :::; uk, zoom(u) generates f(u; ui): ui is a child of u
in T and pairs (ui,uj) such that in the input multi-digraph the
set of edges from Leaves(ui) to Leaves(uj) is non-emptyg.

� Edge zoom: Given an edge (u; v), zoom((u; v)) is defined
as follows: fdelete the edge (u; v); replace(u); replace(v);
add all the edges in the next layer that run from the children
of u to the children of vg.

Suitable inverses of the operations above can be defined provided
certain restrictions are obeyed. For example, the inverse of replace
is defined, for a set of vertices, only if they are on the same layer
and if they constitute all the children of a vertex u.

3 Visual Navigation

When we are visualizing data sets that are two to three orders of
magnitude larger (say around 250 million records) than the screen
resolution (typically about one million pixels), it becomes impera-
tive to use a hierarchical decomposition of the visual space, partic-
ularly if we require real-time interactivity. In our case, we achieve
fast response by navigating an input graph via its slices.

Our system allows the user to begin with a visualization of an
initial layer, and interactively focus on selected edges which can be
zoomed in to produce a visualization of a slice from the next layer
down the hierarchy. Currently, the system uses a mouse/keyboard
input interface. Using joysticks and gestures to navigate the en-
vironment is a possibility worth exploring. The best representation
for a particular slice depends on properties of the graph representing
that slice, so our system allows a variety of visualization techniques
to be used for each slice. In the case of highly dense slices, which
are usually encountered in higher layers of the slice hierarchy, we
are often best off using adjacency matrix style visualizations since
the number of edges is too large to effectively use the traditional
nodes-and-edges visualization.

In our experience, the process of drilling down on slices works
well to explore the real world multi-digraphs we are dealing with.
Such data sets have highly skewed distributions, and this skewness
can be directly observed by the visual cues in our 2D and 3D repre-
sentations. For example, when we are dealing with phone records

(calling frequency or total minutes of call), we are naturally inter-
ested in areas of larger edge weights. Looking at the grid repre-
sentation shown in Figure 4, we can quickly determine such edges
using the inclination and color of the sticks. We can then zoom into
these sticks to obtain more refined views.

We now describe in more detail our scheme to visualize very
large multi-digraphs. In this context, large refers to data sets that
do not fit into main memory. Our system consists of two main
components: the C computational engine and the Java-3D graphi-
cal engine. Given a large graph as input, the computational engine
uses the approach outlined in the previous sections to cluster sub-
graphs together in a recursive fashion and generates a hierarchy of
weighted multi-digraphs. The edge-slices in each layer of this hier-
archy are sufficiently small to fit in main memory.

A typical large and realistic data set may have a number of in-
teresting patterns and trends that information visualization and data
mining applications want to explore. However, providing all this
information in one shot might be too difficult to analyze or under-
stand. In our metaphor, we amortize the visual content in every
scene with the constructed graph hierarchy. Further, the reduced
size of each edge-slice makes it possible to provide the necessary
real-time feedback in such an exploratory setting. As the user tra-
verses deeper into the hierarchy, the scene displayed becomes more
detailed in a restricted portion of the data set.

The graphical engine has two primary functions - generating
graph representations for individual slices in H(G;T) using the
navigation operations defined in the previous section, and display-
ing appropriate visual cues and labeled text. One of the aims is
to help the user have intuitive understanding along with complete
navigation control.

We now describe the main visual primitives that allow a user to
move from one level of the hierarchy to another while changing the
visual representation if necessary.

Zooming

As the user is viewing a particular slice, he/she can use the mouse
or keyboard to pan, rotate, or zoom the image. A threshold can be
set which defines between which zoom factors the visualization is
valid. If the user zooms far enough in or out to exceed the threshold,
a callback is invoked which replaces the current slice with a new
slice. When zooming, the computation engine retrieves a new slice
representing the closest edge to the center (which is where we are
zooming into) and the slice is placed on a stack. When zooming out
the corresponding slice is retrieved from the stack.

Views

A variety of visualizations can be used to display a given slice. A
default is chosen automatically based on properties of the graph,
but the user is presented with a list of visualization types that can
be selected. If an alternate view is selected, the current visualization
is substituted by the chosen replacement. Our system keeps track
of the preferred view in case the user navigates to other slices and
then returns to a slice. Moreover, several mechanisms are provided
that allow the user to plug-in his/her own slice representation.

When multiple views of a slice are used simultaneously, they can
be linked together. As the mouse passes over elements in one view,
other views highlight the corresponding elements in their view.

Selection

The user interface allows for nodes to be selected with the mouse. A
list of selected nodes is maintained by the system which can be used
by different visualization methods. Typically, the selection is used
to display a sub-graph of the current slice. For example, if we are
displaying a graph whose nodes are all states in the US, we could

Proceedings of the IEEE Symposium on Information Visualization 2000 (InfoVis'00)
0-7695-0804-9/00 $10.00 @ 2000 IEEE

Figure 4: A graph slice represented as a needle grid. Edge values are shown with multiple cues: the segment color, segment
length, and segment orientation.

select a handful of states we are interested and limit our display to
only those nodes and related edges. When the selection changes on
one view of a graph, it is appropriately updated on corresponding
linked views.

Slice Computation

Our computation engine does not need to compute the entire
H(G; T) a priori, since it is likely that a user will only navigate
through a subset of the data. Therefore, our engine runs in concert
with the visualization interface and acts as a server. The interface
starts off by requesting an initial slice from the server. This slice
is converted to a visual representation, which is navigated by the
user. If the user selects to zoom into an edge, the interface sends a
request to the server to obtain a new slice. The engine can compute
this slice on the fly, or simply return the contents of a precomputed
slice.

4 Slice Views

This section describes some of the built-in visualization techniques
that can be used to display graph slices. MGV provides a flexible

interface for defining new visualizations so we are not limited to the
set of views that we describe here.

MGV works with slices in their adjacency matrix representation.
Slices are visualized as a set of line segments, where each matrix
element maps into a single line segment whose origin, length, color,
width, etc. depend on some mapping function f . In the simplest
case, we can draw the elements onto a rectangular grid, but much
more sophisticated mappings are possible.

Our system automatically tracks the correspondence between
edges and visual segments. Thus, the author of a visualization does
not have to handle the details of user interaction. The system can
determine which edges are selected through the interface. It uses
this information to interactively label edges and determine which
edge is to be replaced and expanded when the user zooms in.

Currently, our visual metaphors are being used in the analysis
of several large multi-digraphs arising in the telecommunications
industry. These graphs are collected incrementally. For example,
the AT&T call detail multi-digraph, consists on daily increments of
about 275 million edges defined on a set containing on the order of
260 million vertices. The aim is to process and visualize these type
of multi-digraphs at a rate of a million edges per second. We will
use examples from this data to illustrate the metaphors presented in

Proceedings of the IEEE Symposium on Information Visualization 2000 (InfoVis'00)
0-7695-0804-9/00 $10.00 @ 2000 IEEE

Figure 5: A star-map view of call data, superimposed with geographic information.

this section2; we describe other applications in Section 4.6.

4.1 Needle Grid

One way to view a slice is as a real non-negative matrix A whose
entries are normalized in a suitable fashion. Each matrix entry
A(i; j) is represented as a vector r(i; j) with origin at (i; j) and
whose norm is obtained via a continuous and non-decreasing map-
ping n. The angle ang(i; j) that r(i; j) forms with the horizontal
axis x is predetermined by the order of the entries in the matrix A.
We constrain the range of ang(i; j) to run between �� and 0. One
such possible mapping n is the one provided by your car speedome-
ter except that now the needle increases in length as it rotates from
�� to 0. We refer to the vector r(i; j) as the needle corresponding
to the value A(i; j).

A rectangular grid with the needles, representing the values
A(i; j), placed at their corresponding origins (i; j), is called the
needle-grid representation of the given matrix or a needle slice.
(see Figure 4 for an example). Note that the grid view for a par-
ticular graph is not unique. It depends on the ordering of the matrix
elements.

For our set of phone call data in Figure 4, we can make some in-
teresting observations. First, we see high values along the diagonal.
This indicates a higher call volume for interstate calls in general.
We have arranged the order of the matrix elements to conform to
a Peano-Hilbert path through the US map. In this way, clusters
around the diagonal correspond to country regions with high call-
ing traffic. We can also observe asymmetries in the edge density
and that could be areas with differing densities of AT&T customers.
In general, patterns at higher levels of the hierarchy can be used as
exploration guides at lower detail levels.

2Values have been changed in this paper to protect sensitive information.

4.2 Star Maps

The star-map view rearranges each row or column of our matrix
into a circular histogram rooted at a single point. The histogram is
arranged such that the first value is drawn at 0 degrees and values
are evenly spaced such that the final value is drawn at 2�. This
results in a star-like appearance. We refer to each element of a star
as a star segment. Star segments have a length proportional to the
value of the edge it represents. Additionally, the color of the star
segment is dependent on the value to provide an additional visual
cue.

Each star represents a row or column, depending on which type
of star visualization is chosen. The position in which each star is
placed is arbitrary; however, if available, we can make use of geo-
graphic data associated with each node in the graph. For example,
suppose we are looking at call detail data, where each node in the
slice represents a particular state. We could supply latitude and lon-
gitude for each node and arrange the stars on a USA map, as shown
in Figure 5. In this case, we are placing the star representing the
row (or column) j at the geographic position of j.

The star-map conveys a different type of information than the
needle grid. It is particularly well suited to focus on a particular
subset of vertices and detect easily among them those ones with
higher or lower incoming or outgoing traffic. By moving the mouse
over the segments, the corresponding vertex labels get activated.
In the call detail data, we notice some states with one or two star
segments that are larger than the others. Moving the mouse over the
segments reveals which states these are.

4.3 Multi-comb

The multi-comb view can be thought of as an extension of the star
map. With star maps, an entire row or column of the matrix is
drawn such that it appears as a single object (in the shape of a star)

Proceedings of the IEEE Symposium on Information Visualization 2000 (InfoVis'00)
0-7695-0804-9/00 $10.00 @ 2000 IEEE

but it represents a collection of values. Taking this a step further,
we can turn an entire matrix into a “single” object by placing the
collection of stars that compose the matrix on top of each other
along the z axis and connecting the endpoints of the corresponding
star segments. An example is provided in Figure 6. This single
object represents an aggregate view of a graph with hundreds of
million of edges.

An advantage of this view is that we can compare rows or
columns depending if we look along the star segments at a particu-
lar z or if we look at all the z values for a particular star segment.
When we consider all the z values for a single star segment, it re-
sembles a comb, which is why we term this view the multi-comb
view. This view is useful in providing animations of data set evolu-
tion.

Figure 6: Multi-Comb View of call detail data at the state level.

4.4 Multi-wedge

The multi-wedge view is a different way to overlay stars on top of
each other. Instead of putting each star at a different z value as
we do with the multi-comb, we draw a single star as ticks instead of
segments, where each tick is placed at the endpoint of that segment.
The resulting picture, as shown in Figure 7, is a circular histogram
with a distribution spectrum on each star segment, which we call
a wedge. From this view, we can see the min and max values for
a star line (which is a row or column), standard deviation, median,
mean, etc. This is a two dimensional view, which is preferable to
the multi-comb for static visualizations. The colors of the ticks
represent the value of the back-edge in the multi-graph. When the
matrix is symmetrical, the colors of ticks will occur in order. Thus,
we can easily detect asymmetries with this coloring convention.

In our example, we can look at the calling distributions for each
state. We again see that intrastate calling is typically a lot greater
than interstate calling, but this view reveals the rest of the distri-
bution varies a lot by state. Looking at the distributions can tell
us which states have more regional calling patterns. For example,
North Dakota makes a lot more calls to Minnesota than to any other
state, but California has a more even distribution to the other states.

Figure 8: Aggregate view of the data represented in Figure 7.

We also see that the northern states of Idaho, Montana and North
Dakota have lower phone usage than neighboring states.

4.5 Aggregate Views

Although we map each matrix entry to exactly one screen segment,
we can create mappings which effectively compute certain aggre-
gate operations. For example, suppose we are using the star map
for a graph with associated geographic information and we want
to replace the stars with a single bar representing their aggregate
equivalent. We can accomplish this by creating bar segments for
each star and placing them on top of each other along the z direc-
tion. The resulting view will appear as a single bar representing the
sum of values for that row (or column), as shown in Figure 8. Ad-
ditionally, a user can move the cursor on the bar to find out what are
the segments that make up the bar, and can zoom in on a particular
segment.

If we wish to do more complicated aggregations, such as taking
the mean, median or an arbitrary function f over the values, we can
accomplish this by mapping the slice into a new slice represent-
ing the aggregation and visualizing that slice. For example, if we
wanted to visualize the average over each row, we would map an
m �n slice into a m � 1 slice. Our system provides a mechanism to
define slice transformations, which are useful in other contexts as
well. For instance, suppose we are only interested in a subset of the
vertices. We can use a slice mapping to select out only the nodes
we are interested in. We can also use transformations to rearrange
the vertex ordering.

4.6 Applications

The navigation operations can be enhanced to perform a variety of
statistical computations in an incremental manner. They can also
be used to animate behavior through time. The stars-map metaphor
is very useful when the vertices of the multi-digraph have an under-
lying geographic location (see Figure 5). This offers a high degree
of correlation between graph theoretical information and the under-
lying geography.

Proceedings of the IEEE Symposium on Information Visualization 2000 (InfoVis'00)
0-7695-0804-9/00 $10.00 @ 2000 IEEE

Figure 7: Multi-Wedge view of call detail data. Each wedge shows the distribution of calls for one state, and can be compared to
the star of a particular state.

We currently have instantiations of MGV that visualize call detail
data and network capacity data. We can work with a variety of
other data sets as well; citation indexes, general library collections,
program function call graphs, file systems and internet router traffic
data are, among others, interesting data sets that can be explored
using the approach described here.

Internet data is a prime example of a hierarchically labeled multi-
digraph that fits quite naturally our graph metaphor. Each i-layer
represents traffic among the aggregate elements that lie at the ith

level of the hierarchy (such as IP address blocks or the domain name
space). We can also apply the techniques to web data. Considering
pages as nodes and hyper-links as edges, we can take a set of web
pages as a digraph. A portal such as Yahoo, which categorizes web
sites into a hierarchy, could be used as T .

5 Implementation

As mentioned previously, MGV is separated into a computation en-
gine and a Java-based user interface. The engine runs as a web
server, and communication takes place using the http protocol. The
server encodes slices as XML which are then processed by the in-
terface. The use of Java-3D makes the system portable and allows
fast rendering of visual representations, as it is able to take advan-
tage of hardware graphics support. In the design of the interface,
we had to make decisions on some interesting questions regarding
the presentation of the various visualizations:

� How do we provide context to the user while he/she is explor-
ing a node deep in the hierarchy?

� Typically, at each level, there are a few sites that are poten-
tially interesting. How do we communicate this in the display
and encourage them to explore deeper?

� Labeling is an important issue when displaying information.
How can we avoid the problem of cluttering during the display
of labels?

� How can we apply geographic information associated with the
data?

In our display, we maintain context in two ways. We use one
window to display a delayed view, with respect to zooming, of the
user’s view (see Figure 9). We highlight those data portions that
have been visited already to provide users with information about
the extent of their exploration.

The visualization engine tracks the mouse activity of the user
and displays textual information about the closest edge in a separate
window.

Potentially interesting regions (i.e. hotspots) are highlighted in a
different color to catch the user’s attention. An obvious limitation
of the current approach is that what is and is not interesting from a
data mining point of view must be pre-determined.

In order to handle textual labels in an efficient manner we divide
the set of labels into two parts, static and dynamic. Static labels
are displayed at all times. They are a small fraction of the entire
label set. Dynamic labels are displayed only when the user selects
them. The combination of static and dynamic labels manages the
excessive clutter in the display well.

Proceedings of the IEEE Symposium on Information Visualization 2000 (InfoVis'00)
0-7695-0804-9/00 $10.00 @ 2000 IEEE

Figure 9: Overview window. The plus symbol shows the loca-
tion in the parent slice of our current zooming position.

6 Conclusions

Needle-grids, star-maps, multi-combs and multi-wedges are the vi-
sual counterpart of the graph theoretical notions of edges and neigh-
borhoods. They can be superimposed on an arbitrary layout of the
vertex set of a graph without cluttering the view. They can be
also used to visually represent certain type of aggregate statistics
on multi-graphs. These facts coupled with a predefined hierarchy
on the vertex set allow us to visually explore very massive multi-
digraphs. The navigation is based on the notion of graph-slices.
Graph-slices provide flexibility in terms of visual representations
and visual navigation. The fact that the MGV client is implemented
in Java3D helps make the system highly portable and extensible.

Our metaphor allows the integration of visualization and compu-
tation on a large class of massive data sets. It opens the door to the
use of matrix theoretical methods for the hierarchical analysis of
very large data collections. In particular, the pseudo-automatic se-
lection of color maps depending of the statistical properties of the
data at different levels of the hierarchy is one of the major issues
that we are planning to address in the future.

Another natural direction to pursue is to come up with an effi-
cient distributed memory implementation of MGV.

Acknowledgments

We thank S. Byers, D. Keim, S. Sudarsky and W. Sweldens for
comments and discussions about this this work.

References

[1] B. Rogowitz, L. Treinish. A Rule-based Tool for Assisting
Colormap Selection. In Visualization ’95 proceedings, vol-
ume 444, pages 118-125, Oct. 1995.

[2] M. Chuah. Dynamic Aggregation with Circular Visual De-
signs. In Proceedings IEEE Symposium on Information Visu-
alization, pages 35-43, 1998.

[3] M. Ankerst, D. Keim, H. Kriegel. Circle Segments: A Tech-
nique for Visually Exploring Large Multidimensional Data
Sets. In IEEE Conf. Visualization, 1996.

[4] J. Abello, E. Gansner, E. Koutsofios, S. North. Large Scale
Network Visualization. In SIGGRAPH Newsletter, Vol. 33,
No 3, pages 13-15, August 1999.

[5] B. Rogowitz, L. Treinish. How not to lie with visualization
In Computers in Physics, volume 10, pp 268, 1996.

[6] J. Abello, A. Buchsbaum, and J. Westbrook. A functional
approach to external memory graph algorithms. In European
Symposium on Algorithms, volume 1461 of Lecture Notes in
Computer Science, pages 332–343. Springer-Verlag, 1998.

[7] S. Eick, G. Wills. Navigating Large Networks with hierar-
chies. In Proc. IEEE Conf. Visualization, pages 204-210,
1993.

[8] G. Wills. NicheWorks-interactive visualization of very large
graphs. In Proc. 5th Int. Symp. Graph Drawing, GD, volume
1353 of Lecture Notes in Computer Science, pages 403-414,
Springer-Verlag, 1997.

[9] J. Abello, S. Krishnan. Navigating Graph Surfaces. In
Approximation and Complexity in Numerical Optimization:
Continuous and Discrete Problems, P. Pardalos(Ed.), pages
1-16. Kluwer Academic Publishers, 1999.

[10] J. Abello, J. Vitter. (Eds) External Memory Algorithms. Vol-
ume 50 of the AMS-DIMACS Series on Discrete Mathemat-
ics and Theoretical Computer Science, 1999.

[11] J. H. Clark. Hierarchical geometric models for visible surface
algorithms. Communications of the ACM, 19(10):547–554,
October 1976.

[12] C. Duncan, M. Goodrich, S. Kobourov. Balanced Aspect Ra-
tio Trees and Their Use for Drawing Very Large Graphs. Lec-
ture Notes in Computer Science, 1547:111-124, 1998.

[13] P. Eades, Q. W. Feng. Multilevel Visualization of Clustered
Graphs. Lecture Notes in Computer Science, 1190:101-112,
1

[14] L. De Floriani, B. Falcidieno, C. Pienovi. A Delaunay-Based
Method for Surface Approximation. Eurographics ’83, pages
333–350, 1983.

[15] P. Heckbert and M. Garland. Multiresolution modeling for
fast rendering. Proceedings of Graphics Interface ’94, pages
43–50, May 1994.

[16] T. Munzner. Exploring Large Graphs in 3D Hyperbolic
Space. IEEE Computer Graphics & Applications, 18(4):18–
23, 1998.

[17] Y. Ansel Teng, Daniel DeMenthon, and Larry S. Davis.
Stealth terrain navigation. IEEE Trans. Syst. Man Cybern.,
23(1):96–110, 1993.

Proceedings of the IEEE Symposium on Information Visualization 2000 (InfoVis'00)
0-7695-0804-9/00 $10.00 @ 2000 IEEE

