
Graph Sketches
Technical Note

James Abello� Irene Finocchiy Jeffrey Korn�

� Information Visualization Research
Shannon Laboratories, AT&T Labs-Research
fabello,jlkg@research.att.com

y Computer Science Department
University of Rome “La Sapienza”
finocchi@dsi.uniroma1.it

Abstract

We introduce the notion of Graph Sketches. They can be thought of
as visual indices that guide the navigation of a multi-graph too large
to fit on the available display. We adhere to the Visual Information-
Seeking Mantra: Overview first, zoom and filter, then details on de-
mand. Graph Sketches are incorporated into MGV, an integrated vi-
sualization and exploration system for massive multi-digraph nav-
igation. We highlight the main algorithmic and visualization tasks
behind the computation of Graph Sketches and illustrate several ap-
plication scenarios. Graph Sketches will be used to guide the nav-
igation of multi-digraphs defined on vertex sets with sizes ranging
from 100 to 250 million vertices.

Keywords: visualization, massive data sets, graphs, hierarchies.

1 Introduction

One of the great visualization challenges today is the represen-
tation and fluid navigation of complex systems. We concentrate
on very large multi-digraphs of sparse density and low diameter.
Geographic information systems, telecommunications traffic [1],
World-Wide Web [5] and Internet data [8] are prime examples of
the type of graphs whose navigation can be guided by our Graph
Sketches approach.

1.1 The bottlenecks

When visualizing massive data, two of the most fundamental is-
sues are those associated with the I/O and screen bottlenecks. The
I/O bottleneck is caused by the substantial difference between CPU
speeds and external memories [4]. The screen bottleneck [1] is
caused by the simple fact that the amount of information that can be
displayed at once is ultimately limited by the number of available
pixels and the speed at which the information is digested by a user.
Even though a large number of pixels diminishes the screen bottle-
neck, it does not help the user’s visual processing abstraction unless
the display metaphor incorporates some global data set semantics.
We propose mechanisms to alleviate the screen bottleneck.

1.2 Approach

Our approach is based on the hierarchical surfaces metaphor pre-
sented in [3]. Its effectiveness on very large graphs depends on a
good recursive clustering that can be mapped to a partition of the
screen space. Each such mapping is what we call a Graph Sketch.
Graph Sketches should offer simple overviews of a very large graph
macro-structure (Figure 3).

These views are zoom-able and are parameterized by user spec-
ified subgraph thresholds. When the obtained subgraph is small

enough to fit on the available screen, the graph representation and
its processing can be varied.

The concentration of this paper is on large graphs. With this in
mind, we consider a multi-digraph large if its number of vertices is
greater than d � log�d� where d is the number of available display
pixels.

Graph Sketches provide a unified view of computation and vi-
sualization of very large graphs. Namely, visualizations become
the product of graph decompositions that are tailored to a particular
very large graph problem of interest. Different graph representa-
tions may be necessary for different goal driven navigations. We
suggest searching for graph representations that encapsulate the es-
sential features of either a clustering algorithm or a typical subspace
that contains a feasible answer.

This paper presents techniques that are particularly helpful in
guiding the navigation of very large graphs in order for a user to
drive the computation towards a set of feasible answers.

It is worth mentioning that the approach advocated here allows
the use of a commercial relational database to query a multi-digraph
hierarchy with very little extra effort. Graph Sketches are amenable
to distributed visual exploration.

1.3 Related Work

Multi-level graph views offer the possibility of drawing large
graphs at different levels of abstraction. The higher the level of
abstraction, the coarser the provided graph view. Compound and
clustered graphs have been considered in [7, 13]. In [9], some of
the limitations of force-directed based methods for drawing large
graphs are addressed. A central idea is to produce graph embed-
dings on Euclidean spaces of high dimensions and then projecting
them into a two or three dimensional subspace. The method is based
on a maximal independent set filtration of the vertexes of the graph
and it is not apparent how to obtain such a filtration in the case of
external memory graphs.

The primary difficulty with the surfaces approached described in
[3] is that 2D surfaces are not easy to refine locally. We concen-
trate here on methods of computing, from the input graph, hierar-
chy trees that can be turned into efficient Graph Sketches. Graph
Sketches can be viewed as a formulation that provides a uniform
overall view of massive graph data together with scalable, efficient
and flexible visual navigation tools.

The layout of the paper is as follows: In Section 2, we intro-
duce graph sketches; the main elements of the computational en-
gine, and its fundamental operations and I/O performance are cov-
ered in Section 3. In the same section we briefly review the main
components of the C-Java visualizer (MGV) [1] that manipulates
Graph Sketches. Section 4 points out some future research direc-
tions.

Proceedings of the IEEE Symposium on Information Visualization 2001 (INFOVIS’01)
1522-4048/01 $17.00 © 2001 IEEE

Figure 1: Location-based Graph Sketch of call detail traffic
among US states.

2 Graph Sketches

A Graph Sketch is a screen zoom-able macro-view of a very large
graph. The goal is to use the sketch to guide the search for “in-
teresting” subgraphs. The sketch should be tailored to the task at
hand. For example, if the goal is to find dense subgraphs, the sketch
needs to incorporate some notion of distance. This, in turn, af-
fects the type of recursive clustering that must be used to define the
sketch. In general, a good deal of ingenuity will be necessary to de-
sign sketches that become effective visual navigation aids. With this
framework in mind, designing a good navigation sketch for a par-
ticular problem becomes the central algorithmic question that needs
to be resolved before a useful interactive visualization can be pro-
posed. In this context, visualization is no longer just a presentation
aid; it becomes part of the computational process.

A sketch for a graph G is a multi-digraph defined on a partition
V�,V�,��� Vk of V �G� that is embedable on the available pixel array.
A multi-edge from Vi to Vj represents the set of edges in G that run
from vertices in Vi to vertices in Vj . The multiplicity is just the
number of such edges. We refer to this multi-graph as a k-view of
G. For a given graph problem P , if a solution on G can be obtained
from solutions to P on the Vi’s, then in principle one can use divide
and conquer to search for a solution to P . This is the case for certain
graph problems when the k-view is planar.

Given an algorithm that computes a sketch for a graph G, it can
be used recursively to generate a tree T , such that Leaves�T � rep-
resent a refinement of the original partition defining the sketch. This
hierarchy tree T determines a hierarchical partition of E�G�. This
means that a detailed view of an sketch multi-edge can be obtained
by zooming into it. In other words, from an initial planar embed-
ding of the sketch, one can zoom in locally into any of the edges.
This locality provided by the planar clustering allows the user to ex-
plore the multi-digraph edge hierarchy in a fluid manner. Of course,
all of this is possible only if the detailed view of a macro-edge can
be computed efficiently.

Figure 2: BFS Sketch. Each diagonal box represents a level of
BFS. The remaining boxes represent the subgraphs induced
by adjacent levels. Their edge density is color mapped.

Figure 3: Orthogonal Bars Sketch

2.1 Constructing a Sketch�G� T �

Given a procedure Construct-View(G) that produces a d-view for
G with partition V�,V�,...,Vd, Construct-View is invoked for each
i on the subgraph induced by Vi. It is important to notice that all
these invocations are independent of each other and that by the end
of the computation of the d-sketch, the only references that are kept
are those from each obtained multi-edge to the actual input data that
it represents. Only the subgraph to be expanded needs to reside in
memory. Care needs to be taken to carry with each call a mapping
from the current vertex names to the local ones. The depth of the
recursion is controlled by the number of available pixels d, a time or
space budget, and problem defined parameters. When the recursion

Proceedings of the IEEE Symposium on Information Visualization 2001 (INFOVIS’01)
1522-4048/01 $17.00 © 2001 IEEE

is finished a data structure representing the obtained hierarchy tree
and a mapping from the tree leaves to the partition of V �G� that
they represent is produced. This data structure may reside in mem-
ory or on disk depending on the amount of available RAM. No-
tice that the complexity of constructing a Sketch�G� T � depends
strictly on the complexity of the procedure Construct-View and on
the quality of the obtained partition.

2.2 Sample Sketches

The main task to design a good sketch for a problem P is to devise
a partitioning scheme for the input graph that guarantees that the
space of solutions for P can be obtained by a suitable combination
of solutions of P restricted to the subgraphs induced by each set in
the partition. Of course, this may not be the case for all problems
and we know of no easily computable criteria to classify a problem
as partitionable (in the sense described here). Nevertheless, we pro-
vide concrete examples of sketches for some NP-Hard problems.

� The most direct example of a sketch comes from graphs whose
vertices have associated a geographic location. A classical ex-
ample is the graph whose vertices are telephone numbers and
the edges consists of phone calls among them. In this case,
the hierarchy T on the vertex set is pre-established and con-
sists of the subdivision of the earth in continents, countries,
states, counties, towns, etc. An embedding of the hierarchy is
provided by a cartographic map. A so called star map draw-
ing was proposed in [1] to place the underlying graph on top
of the map embedding. An alternative view can now be pro-
vided by using a matrix based sketch. The rows and columns
of the matrix are ordered according to a Peano-Hilbert order-
ing determined by the geographic position of the vertices (see
Figure 1). The edge density of the corresponding subgraphs
is represented by a suitable color map.

� Consider the problem of finding a largest cardinality clique
in an arbitrary connected graph G. A Breadth First Search
tree of G determines a partition of V �G� defined by distances
from the BFS root. The corresponding multi-graph is planar
(in fact, ignoring directions, it is simply a path) and the num-
ber of sets in the partition is just the depth of the BFS tree.
So the only condition that could fail for this multi-graph to be
considered a sketch is that the depth of the BFS tree is larger
than sqrt�d� where d is the number of available pixels. In
this case, successive folding of the path can be done until it
fits on the available screen. More generally, any planar k-
view can be transformed into a related planar d-view where
� � d � k. For the maximum clique problem, the asser-
tion that a BFS based partition of V �G� is a “good” d-sketch
follows from the observation that cliques of G are by defini-
tion induced subgraphs where all the vertices are at distance
exactly 1. Therefore, cliques can span at most two consecu-
tive levels of any BFS tree. A screen embedding is obtained
by mapping each vertex of the hierarchy to a box placed di-
agonally inside its parent’s box with the side lengths of the
two boxes being in the same proportion as the ratio of the
cardinalities of their corresponding sets of descendant leaves.
Because the sketch is based on a BFS view of G, the subgraph
consisting of the edges between consecutive levels gets natu-
rally assigned to the only adjacent boxes that are determined
by consecutive boxes on the diagonal. Each box is painted
according to a density based color map. When zooming on a
box, its interior is partitioned according to its children and the
color map is recomputed according to its children densities.
The diagonal boxes corresponding to the leaves of the hierar-
chy tree can be though of as a coordinatization of the visual
space (see Figure 2). If more detailed connectivity is desired,

a conventional drawing representation can be invoked. An
overview representation is always maintained on an auxiliary
window with an indication of the hierarchy tree level at which
the exploration is taking place. In call detail graphs, we have
been able to detect experimentally that the largest cliques also
have logarithmic size.

� A more economical sketch can be obtained by mapping each
node of the hierarchy tree to a colored bar where the length
is proportional to the size of its set of descendants leaves and
where the color again encodes a map density. The collection
of bars representing the set of children of a pair of bars are
placed parallel to each other and in the order of their BFS
levels. In the case of zooming into the children of just one bar
its children are placed inside a zoomed version of the bar in
a direction orthogonal to that of the parent bar. Initially, the
root bar gets assigned a fixed but arbitrary direction. We refer
to this BFS sketch embedding as the orthogonal bars sketch,
(see Figure 3).

� Consider now the problem of computing an edge minimum
k-view of an arbitrary graph G with the added restriction that
every set in the partition must be smaller than an input value
s. This problem is also NP-complete. However a Depth First
Search spanning forest F of G that satisfies the property that
if a vertex v belongs to a short cycle, then F contains a path
that goes around some short cycle that contains v, can be
used to obtain a sketch of G. In the case that several short
cycles contain v, priority is given to the unique cycle that
is determined by the most recently added edge to the span-
ning tree. This is a two pass algorithm. In the first pass, the
spanning tree is constructed. In the second pass, a bottom up
procedure that contracts pendant leaves and interior vertices
with exactly two leaves as children produces a partition of the
vertex set. It is not hard to show that this procedure com-
putes a k-view of a graph G in space O�jE�G�j� and time
O�jE�G�j � deg � log�k�� where deg is the maximum degree
of a vertex in G. It is not clear that this sketch is a good one
for this constrained k-view problem.

� The Network Decomposition Problem presented in [6] con-
sists of finding a coloring of V �G� with a distance parame-
ter l such that each color class is partitioned into an arbitrary
number of disjoint clusters, the shortest path distance between
any pair of nodes in a cluster is at most l and clusters of the
same color are at least distance 2 apart. The goal is to find
such a decomposition of a network where both the number of
color classes and the distance parameter l are both O�log�n��
where n is the number of vertices in G.

Despite the apparent similarity between this problem and the
previous two, such decompositions can be found in optimal
time O�jEj � n� by a simple greedy construction. This de-
composition can be used as a base for a sketch but it is not
clear for what class of graph problems this is a “good” sketch.

3 Implementation

3.1 Sketch maintenance

In order to effectively use sketches, the following pre-processing
steps are necessary.

� Compute an external memory BFS. This can be done in
O��jV j � jEj�B� � log�jV j�B� � sort�jEj�� I/O’s by us-
ing a modification of a data structure originally proposed by
[11]. B is the size of the disk block.

Proceedings of the IEEE Symposium on Information Visualization 2001 (INFOVIS’01)
1522-4048/01 $17.00 © 2001 IEEE

� Build an in-core index to a disk resident data structure that
contains for each level of the BFS its induced subgraph and for
each pair of adjacent levels the subgraph consisting of all the
edges going from one level to the other in both directions. The
in-core index will only keep a reference to the disk location,
the associated density function value and a few book keeping
items. With this information, the corresponding screen em-
bedding is computed as depicted in Figure 2 or Figure 3. The
corresponding portion of the current hierarchy tree T is also
stored in memory. Now, for those vertices of the hierarchy
tree whose associated induced subgraph fits in main memory
the corresponding full hierarchy subtree is computed, using an
internal memory implementation. Notice that all these com-
putations can be made independently. For those vertices of
the hierarchy tree whose vertex set fits in main memory but
not its edge set, a semi-external version of BFS is invoked [2].
Those vertices of T whose associated vertex set does not fit
in memory are processed again by a fully external BFS al-
gorithm. Notice that all these computations are amenable to
parallelization since they are independent. At the end of these
steps, we have a disk resident representation of the hierarchy
tree T and a mapping from its leaves to the actual vertices that
they represent in the input graph.

3.2 Navigation

From any given layer the user can move to any of the adjacent layers
by partial aggregation or by refinement of some sets in the corre-
sponding partition. Namely, from any given multi-edge e in a cur-
rent sketch the user can zoom into e’s corresponding detailed view
or he/she can also zoom out into the subgraph that generated e.

The main navigational operation used by the computational en-
gine is:

� Edge zoom: Given an edge �u� v�, zoom��u� v�� is defined
as follows: fdelete the edge �u� v�; replace�u�; replace�v�;
add all the edges in the next Sketch layer that run from the
children of u to the children of vg.

The user can customize provided color maps to refine the search
at different levels of granularity. An assorted set of multi-linked
views and labels are at his/her disposition to identify the actual val-
ues being represented by the color maps.

Graph Sketches are incorporated into MGV [1] (a Massive
Graph Visualizer) whose more salient features are:

� It handles hierarchical views of massive multi-digraphs.

� It consists of a C-computational engine (server) and a Java-3D
visualizer (client), which may reside on separate machines.
In fact, the visualizer can run on multiple desktops allowing
different users to navigate a massive data set independently.

� It provides a drill-down zoom-able interface together with a
collection of multi-linked views.

� Context is maintained by using multiple cameras. One pro-
vides an overview and the others trail each other depending
of a user specified zooming interval. A persistent history of
previous navigations of the hierarchy is maintained.

� Users can plug-in alternative Sketch visualizations, and can
apply their own filters to the subgraphs accessible from the
sketch.

Adding a new sketch toMGV requires implementing a small set
of functions that handle rendering, zooming, labeling and linking.
The sample sketches described in this paper were each on the order
of between 500 and 1000 lines of Java.

4 Conclusions

Graph Sketches offer a unified view of computation and visualiza-
tion on very large graphs. Very large graph visualizations need to be
aware of the intrinsic algorithmic question that needs to be solved in
order to provide interactive navigation that can guide a user towards
the discovery of interesting graph sub-structures. Tailoring a graph
decomposition to an exploration task appears to be an interesting
angle that deserves further study. Devising useful 3D sketches is a
tantalizing area of research. A question that comes to mind is: Are
there any other interesting graph problems for which the BFS based
sketches introduced here are beneficial?

References

[1] J. Abello, J. Korn. Visualizing Massive Multi-Digraphs. In
IEEE Proc. Information Visualization, pages 39-47, Salk Lake
City, 2000.

[2] J. Abello, A. Buchsbaum, and J. Westbrook. A functional
approach to external memory graph algorithms. In European
Symposium on Algorithms, volume 1461 of Lecture Notes in
Computer Science, pages 332–343. Springer-Verlag, 1998.

[3] J. Abello, S. Krishnan. Navigating Graph Surfaces. In
Approximation and Complexity in Numerical Optimization:
Continuous and Discrete Problems, P. Pardalos(Ed.), pages
1-16. Kluwer Academic Publishers, 1999.

[4] J. Abello, J. Vitter. (Eds) External Memory Algorithms. Vol-
ume 50 of the AMS-DIMACS Series on Discrete Mathemat-
ics and Theoretical Computer Science, 1999.

[5] A. Broder. Graph Structure in the Web. In Networks, Vol. 33,
pages 309-320, 2000.

[6] L. Cowen. A linear time algorithm for network decomposi-
tion. Dimacs TR series, No 94-56, December 1994.

[7] P. Eades, Q. W. Feng, X. Lin. Straight-line drawing algo-
rithms for hierarchical and clustered graphs. In Proc. 4th
Symp. on Graph Drawing, pages 113-128, 1996.

[8] M. Faloutos, P. Faloutsos, C. Faloutsos. On power-law rela-
tionships of the internet topology. In Comp. Comm. Rev., Vol.
29, pages 251-262, 1999.

[9] P. Gajer, M. Goodrich, S. Kobourov. A multidimensional ap-
proach to force directed layouts of large graphs. In Proc.
of Graph Drawing, Lecture Notes of Computer Science,
Springer Verlag, 2000.

[10] D. Karabeg. Parallel Algorithm Graph Reduction. TR No.
CS88-120, University of California, San Diego, March 1988.

[11] V. Kumar, E. J. Schwabe. Improved algorithms and data struc-
tures for solving graph problems in external memory. Proc.
8th IEEE SPDP, pages 169-176, 1996.

[12] B. Shneiderman. Information Visualization: Dynamic
queries, starfield displays, and LifeLines. In www.cs.umd.edu,
1997.

[13] K. Sugiyama, K. Misue. Visualization of structural informa-
tion: Automatic drawing of compound digraphs. In IEEE
Transactions on Systems, Man and Cybernetics, Vol. 21, No
4, pages 876-892, 1991.

Proceedings of the IEEE Symposium on Information Visualization 2001 (INFOVIS’01)
1522-4048/01 $17.00 © 2001 IEEE

