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ABSTRACT

An effective way to process a graph that does not fit in RAM is to
build a hierarchical partition of its set of vertices. This hierarchy
induces a partition of the graph edge set. We use this partition to
produce a macro view of the graph. A screen embedding of this
macro view is a Graph Sketch. We describe the use of Rectangular
FishEye Views to provide drill-down navigation of graph sketches
at different levels of detail including the graph edges data. A higher
level of detail of a sketch focus area is obtained by distorting the
lower detail context. Alternative visual representations can be used
at different sketch hierarchy levels. We provide two sketch screen
embeddings. One is tree-map based and the other is obtained by a
special sequence of graph edge contractions. We demonstrate the
application of our current Unix/Windows prototype to telecommu-
nication graphs with edge sets ranging from 100 million to 1 billion
edges(Giga-Graphs). To our knowledge this is the first time that fo-
cus within context techniques have been used successfully for the
navigation of external memory graphs.

Categories and Subject Descriptors

H.5.2 [Information Interfaces and Presentation]: User Interaces;

1.3 [Computing Methodologies]: Computer Graphics; G.2.2 [Discrete

Mathematics]: Graph Theory; H.3 [Information Systems]: Infor-
mation Storage and Retrieval

General Terms

algorithms, experimentation, human factors

Keywords

visualization, massive data sets, hierarchies, graph sketches, Fish-
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1. INTRODUCTION

Telecommunications traffic [6], World-Wide Web [3] and In-
ternet Data [4] are typical sources of graphs with sizes ranging
from 1 million to 1 billion edges (i.e. Mega and Giga-Graphs).
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These graphs are not only too large to fit on the screen but they
are in general also too large to fit in main memory. Therefore the
screen and RAM sizes are the two main bottlenecks that we need
to face in order to achieve reasonable processing and navigation.
We present mechanisms to deal in a unified manner with both bot-
tlenecks. They are based on the notions of Graph Macro-Views,
Graph Sketches and Rectangular FishEye Views. Our examples
come from AT&T call detail data, where vertices are telephone
numbers and edges represent phone calls, weighted by the num-
ber of phone calls in the period of approximately 20 days (approx-
imately 260 million vertices and 1.5 billion edges).

1.1 Approach

The central idea is to use a hierarchical decomposition of the
graph edge set that is inherited from a hierarchical decomposition
of the vertex set. This allows us to compute macro-views of the in-
put graph at different levels of detail. A screen zoom-able embed-
ding of a graph macro-view is called a Graph Sketch [5]. Naviga-
tion from one level of the edge hierarchy to the next is provided by
refinement or partial aggregation of some sets in the corresponding
partition. These operations correspond to zooming/unzooming on
a local area of the sketch embedding (see Figures 5 and 6). We use
Rectangular FishEye Views|[8] to provide higher visual level of de-
tail on the focus area distorting the lower detail context. In order to
provide the user with a uniform mental map at all levels of the nav-
igation we provide two linked views of the macro-graph structure.
One is tree-map based (see Figure 4) and the other consists of a cir-
cular layout of the higher levels of the hierarchy tree (see Figure 3).
The tree-map drives the navigation on the circular view. When a fo-
cus area is selected on the tree-map the corresponding subgraph at
its next level is depicted. This is achieved by coupling in a very
direct manner the focus area of a navigation with a selected node
on a special macro-view of the input graph. This macro-view is
obtained by recording the sequence of edge contractions executed
by a top-down version of Boruvka’s minimum spanning tree algo-
rithm [2]. The edge contractions preserve the basic connectivity
of the underlying graph and at the same time can be implemented
efficiently on an external memory setting [9]. The obtained hierar-
chy tree provides in this manner enough information to recover the
basic anatomy of the underlying minimum spanning tree and this
in turn can be used to derive an anatomic macro-view of the entire
graph.

Our approach provides a unified view of computation and visu-
alization of very large graphs. Namely, visualizations become the
product of graph decompositions that are tailored to a particular
very large graph problem of interest. Different graph representa-
tions may be necessary for different goal driven navigations. We
suggest searching for graph representations that encapsulate the es-
sential features of either a clustering algorithm or a typical sub-
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Figure 1: Overall Approach

space that contains a feasible answer. This paper presents tech-
niques that are particularly helpful in guiding the navigation of very
large graphs in order for a user to drive the computation towards a
set of feasible answers.

It is worth mentioning that the approach advocated here allows
the use of a commercial relational database to query the multi-
digraph hierarchy with very little extra effort. Also, the techniques
that we introduce can be adapted to a distributed computational en-
vironment.

1.2 Related Work

Multi-level graph views offer the possibility of drawing large
graphs at different levels of abstraction. The higher the level of ab-
straction, the coarser the provided graph view. Compound and clus-
tered graphs have been considered in [13, 14, 15]. The use of binary
space partitions to produce graph clusters was introduced in [12].
However, the quality of the corresponding multi-level drawings de-
pends heavily on the initial embedding of the graph on the plane.
In [17], some of the limitations of force-directed based methods for
drawing large graphs are addressed. Graph Sketches were intro-
duced in [5] and its incorporation into a system called MGV was
described in [7]. This work integrates these previous works with
Rectangular FishEye Views to better navigate very large graphs.
This is achieved by coupling in a very direct manner the focus area
of a navigation with a selected node on a special macro-view of the
input graph obtained via edge contractions.

1.3 Paper Layout

In Section 2, we discuss how graph Macroviews and graph Sketches

are derived from hierarchical partitions of a graph vertex set. The
fundamental algorithmic operations and their performance are dis-
cussed in Section 3. In Section 4 we present the details of an edge
contraction based sketch that is modeled after Boruvka’s algorithm
to compute a Minimum Spanning Forest of a weighted graph [2, 9].
We also introduce there two screen embeddings of the macroviews
introduced in Section 4. Implementation issues are covered in Sec-
tion 5. Section 6 contains concluding remarks and points out some
future research directions.

2. MACRO-VIEWS AND GRAPH SKETCHES

A partition of the vertex set of a graph provides a macro view of
it by collapsing all the vertices on the same set of the partition into
one macro-vertex and representing all the edges that run between
two sets of the partition by a macro-edge with an appropriate mul-
tiplicity. More formally,

e A multi-digraph is a triplet G = (V, E, m) where V is the
vertex set, EZ a subset of VXV is the set of edges and m :
E — N is a function that assigns to each edge a non-negative
multiplicity. We denote by V(G) and E(G) the set of ver-
tices and edges of G respectively. When there is no danger of
confusion, we abuse notation and use V' and E to refer both
to the sets and their cardinalities.

o A multi-digraph G’ = (V' E', m’) is called a k-macroview
of a multi-digraph G = (V, E, m) if V' is a partition of V'
with k subsets, where (u',v") is a macro edge in E' iff there
exists u in u’ and v in v’ such that (u,v) is an edge in E. It
is required also that m'(u', v') = 3, ) em(q) m(u,v) for
uweu andv € v'.

We say in this case that the partition V' determines the macro-
view G’.

When the vertex set of G has a hierarchical partition one can de-
rive a special collection of macro-views of E(G) where one macro-
view can be obtained from the other by either a partial refinement
or aggregation of sets in the partition (see Figure 1). In more formal
terms,

e For a rooted tree T, let Leaves(T') = set of leaves of T'.
Vertices p and q of a rooted tree T' are called incomparable
in T if neither p nor q is an ancestor of the other.

e Any maximal set C of incomparable nodes in T' determines
a partition of V(G). The sets in the partition consist of
{Leaves(q) : qis in C}. We denote with G¢ the macro-
view of G determined by the partition associated with C.
For every p in C, we add the self-loop (p, p, m(p,p)) in or-
der to represent the subgraph of G induced by Leaves(p)
with m(p, p) being its aggregated multiplicity.

e A zoom-able screen embedding of G¢ is called a Graph
Sketch.

3. NAVIGATING THE SKETCH HIERAR-
CHY USING FISHEYE VIEWS

Given an embedded sketch edge (u, v) its zoomed version is de-
fined as follows:

e Edge-zoom(u,v) : delete the macro-edge (u,v), replace u
and v by their children; add all the macro-edges that run from
the children of u to the children of v.

In order to provide efficient use of the screen space we use a
FishEye View as follows. First we embed a macro-view of G de-
termined by a complete level of T" (i.e. all nodes at some fixed
distance from the root). Then we compute a partition of the screen
directly from the layout coordinates with the restriction that every
embedded point belongs to exactly one region. Each screen region
now becomes a potential logical window to which a FishEye View
transformation can be applied, i.e. it can be selected as a focus re-
gion. This focus region is enlarged and the lower level context is
distorted. In the enlarged focus region we display the details asso-
ciated with the zoomed version of the edge (u, v) as defined above.
Different screen partitions based on the layout coordinates can be
obtained. In our current prototype we have implemented a simple
grid subdivision which allow us to use Rectangular Fish Eye views
along the lines presented in [8].

Our overall approach can be summarized as follows.



Overall Algorithm

1. Compute a rooted tree T such that Leaves(T") = V(G) and
such that every tree node has fan out not more than v/d where
d is the number of available display pixels. This is a natural
restriction since on a screen with d pixels we can display at
most d edges.

2. For every edge (z,y) of G let lcar(z,y) denote the level of
the least common ancestor of = and y in T". Edges (z, y) and
(x',y") are labeled I + 1 iff | = lear(z,y) = lcar(z',y').
Edges with the same label are placed on the same equiva-
lence class for further processing.

3. Choose a level L, of T such that its number of vertices is
not more than v/d where d is the number of available display
pixels.

Compute the macro-view G' = (V', E',m’) of G where V' =
{Leaves(u) : wisin L, }.

4. Set Macroview =G’ .

5. Embed M acroview on the screen and compute from its lay-
out coordinates a grid partition of the screen in such a manner
that every embedded point belongs exactly to one grid box.

6. Each grid box becomes now a potential logical window to
which a Rectangular FishEye view transformation can be ap-
plied, i.e. it can be selected as a focus region. A focus region
displays at a higher level of resolution the details of a macro-
edge (u,v) where u and v are nodes in the current view.

7. Update M acroview

The most expensive part of the algorithm described above is the
hierarchy computation (step 1). This may be tied to a particular
navigational task. [5] introduces several examples of hierarchi-
cal graph decompositions. Some of them are Breath First Search
driven and others are based on some form of low diameter network
decomposition. Hierarchy trees of low diameter are important since
the level of screen reuse provided by a focus-within context tech-
nique is severely limited if the hierarchy has very high diameter. In
the case of telecommunication traffic and Internet and World Wide
Web data, it has been observed experimentally that they are not only
sparse but also of low diameter. If the obtained hierarchy does not
satisfy this requirement it can be transformed to a larger hierarchy
with lower diameter as a preprocessing step. This can be done by
collapsing the deepest leaves in reverse postorder until a desired di-
ameter is achieved. In case of very large hierarchies, we have taken
the approach of precomputing some k levels of the hierarchy and
expanding the remaining levels on demand. In the next section we
describe a hierarchical decomposition of the vertex set of a graph
that is driven by a top down version of Boruvka’s minimum span-
ning tree algorithm. Our choice is based on the fact that contrac-
tion preserves connectivity and that Boruvka’s algorithm implicitly
builds a hierarchy of Minimum Spanning Forests which we can use
as the basis of our sketch.

4. A BORUVKA SKETCH

We use an edge contraction based algorithm to compute a mini-
mum spanning forest of a weighted graph as discussed in [9] (see
Figure 2). The algorithm can be implemented by using simple tech-
niques like sorting, selection and bucketing.

Namely, Let G = (V, E) be a graph. Let f(G) CV x V be the
delineated list of edges in a minimum spanning forest (MSF) of G.

Figure 2: Contraction step in Boruvka’s algorithm. Each con-
nected component of the subgraph induced by the vertices in-
side the glob is contracted to a single vertex.

Consider E' C V x V, and let G' = G/E' denote the result
of contracting all vertex pairs in E’. For any z € V, let s(x)
be the super-vertex in G’ into which z is contracted. Thus, given
procedures to contract a list of components of a graph and to re-
expand the result, one obtains the following simple algorithm, to
compute f(G).

A version of Boruvka’s Algorithm

1. Let E; be the lower cost half of the edges of G, when they
are sorted by weight, and let G1 = (V, E1).

2. Compute f(G1) recursively.
3. Let G’ = G/ f(G1).
4. Compute f(G’) recursively.

5. f(G) = f(G1) U R(f(G")), presented as a delineated list,
where R is the inverse of the contraction in Step 3: each edge
in f(G') is replaced by the corresponding original edge in G.

An essential operation for the efficient implementation of this al-
gorithm is to Relabel a set of edges according to a Forest F'. This is
really a very fundamental form of contraction. We refer the reader
to [9] for details.

4.1 The Boruvka Hierarchy Tree

In order to derive a tree T such that Leaves(T') = V(G) all we
need to do is to record for each vertex x its associated super-vertex
s(x) in G’ into which z is contracted during Boruvka’s algorithm.
Initially, z = s(z). The depth of the obtained tree is logarithmic
and we can stop the recursion when a subproblem fits in internal
memory. The overall I/O complexity is O(sort(E)log =) where
M is the size of main memory.

Each vertex w on this Boruvka hierarchy tree (with the possible
exception of the root) represents the subgraph induced by the set
of vertices of G which are descendant leaves of u. We exploit this
fact visually by associating with an embedded hierarchy tree node
its associated subgraph. The subgraph becomes the higher detail
resolution of the hierarchy tree node, i.e. when a node is selected
as a focus node its corresponding bounding box is enlarged and the
corresponding subgraph can be explored in that region in a similar
fashion (see Figures 5 and 6).

In order to provide overall context we select a maximal set C
of incomparable nodes in the Boruvka hierarchy tree such that the
size of the subtrees rooted at the elements of C' is not above a pre-
specified bound (in general this is a function of the available num-
ber of pixels and/or a time-space constraint).

Contracting the Minimum Spanning Forest output by Boruvka’s
algorithm according to the chosen C' give us a Spanning forest of



Figure 3: The leaves of this hierarchy tree represent a partition of 260 million vertices. Interior nodes represent the collapsing of a collection
of subgraphs into a node as mandated by Boruvka’s algorithm. Each tree vertex represents the subgraph induced by its descendant leaves. The
density of this subgraph is encoded by the color of the node. Vertices at the same tree distance from the root appear on the same circumference.
Vertices representing larger subgraphs are pushed closer towards their parents. This provides a local macroview of a region in a graph too large to
be displayed on screen. Selecting a pair of incomparable vertices in this hierarchy tree corresponds to querying the underlying data for the subgraph
whose edges run from the descendant leaves of one node into the descendant leaves of another. The deeper these nodes are in the hierarchy tree, the
smaller the corresponding subgraphs are. At these lower levels of granularity more traditional methods of visualization can be used (see Figure 6).

the sketch G¢. This spanning forest contains the essential macro-
connectivity information of the input graph G . We use a special-
ized circular layout of this spanning forest of the sketch G¢ to
highlight those areas of the original graph with potentially more
“Interesting” subgraphs (see Figure 3). Simultaneously we present
a tree-map view of the sketch G¢ which we use to drive the naviga-
tion (see Figure 4). These two views are linked and this facilitates
the use of large screens. Namely, the tree-map view can be used
on a workstation to drive the navigation of a Graph sketch that is
embedded on a large screen.

S. IMPLEMENTATION ISSUES

The current prototype is implemented in C++. It consists of a
navigator library and a GUI. The navigator library consists of two
separated sets of functions. One of them provides an interface to
the data objects and the other builds the corresponding geometric
objects. The GUI is in charge of rendering the created geometry.
This design allow us to interface with external data processors that

produce hierarchy trees using their own algorithms. For example,
to incorporate a Boruvka sketch into the visualization, a data pro-
cessor needs to provide the corresponding initial hierarchy tree and
later on must be able to send to the navigator the data associated
with a hierarchy tree node on demand. This makes the visualiza-
tion independent of the particular algorithm used for the clustering
of the underlying graph.

The GUI is implemented using Qt [18]. Qt allows development
of cross-platform applications that can be run on Windows, Mac
and a variety of Unix/Linux platforms. Qt is fully object oriented
and easily extensible. The type-safe signals and slot mechanisms
provide powerful capabilities for registering events, message han-
dling and user interactions.

6. CONCLUSIONS

In order to navigate a graph whose size is larger than the screen
size a rectangular FishEye View becomes useful if a macroview of
the graph can be embedded in a way that is locally zoom-able. This



Figure 4: Tree-map Visualization. Each box corresponds to a
vertex in the hierarchy tree.
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Figure 5: Zooming into a node of the hierarchy. A traditional
boxes and arrows display is embedded into the focus area.

corresponds abstractly to the use of a recursive algorithm in the de-
composition of the input graph. The unifying concept of these ideas
is the notion of a hierarchical decomposition of the edge set of a
graph that is derived from a hierarchical decomposition of the ver-
tex set. Extrapolating this idea, in order to navigate a graph whose

Figure 6: An alternative embedding in the focus area depicting
the tree hierarchy below the focused node.

size is larger than the available RAM one needs to build an index
in RAM to a disk resident partition of the vertex set. A hierarchy
in memory is built whose set of leaves corresponds to the index en-
tries. This hierarchy is mapped to the screen in a locally zoom-able
embedding and when navigation asks for details which are not resi-
dent in RAM, they get computed on demand. This suggests that an
important and useful research direction to pursue is to invent screen
embeddings that are recursive in nature but that have certain over-
all level of uniformity. These type of embeddings coupled with a
suitable Focus Within Context technique give a better utilization of
the screen space. In fact, it enlarges it. Requiring a global level of
uniformity minimizes the user tendency to get disoriented as is the
case when navigating with hyperbolic views. Rectangular FishEye
Views offer a great level of uniformity and are efficient to com-
pute and maintain. Other subdivisions of the screen space based on
Voronoi regions may be worthwhile to consider.

We would like to remark in closing that the use of visualization
on the exploration of massive data sets is a very promising area
of highly interdisciplinary nature. The work reported here shall be
taken as an infant step towards the representation and fluid naviga-
tion of complex systems.
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