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A Functional Approach to External Graph Algorithms 1

J. Abello,2 A. L. Buchsbaum,2 and J. R. Westbrook3

Abstract. We present a new approach for designing external graph algorithms and use it to design simple,
deterministic and randomized external algorithms for computing connected components, minimum spanning
forests, bottleneck minimum spanning forests, maximal independent sets (randomized only), and maximal
matchings in undirected graphs. Our I/O bounds compete with those of previous approaches. We also introduce
a semi-external model, in which the vertex set but not the edge set of a graph fits in main memory. In this
model we give an improved connected components algorithm, using new results for external grouping and
sorting with duplicates. Unlike previous approaches, ours is purely functional—without side effects—and
is thus amenable to standard checkpointing and programming language optimization techniques. This is an
important practical consideration for applications that may take hours to run.

Key Words. Connected components, External memory algorithms, Graph algorithms, Maximal matchings,
Maximal independent sets, Minimum spanning trees, Functional programming.

1. Introduction. Because classical algorithms often do not scale when data exceed
main memory limits, recent attention has focused on algorithms that process data in
external storage (disk and tape) [1], [6], [36]. While some external algorithms (e.g.,
for sorting [2]) closely resemble their RAM analogues, others seem to require different
approaches. Graph algorithms for RAMs, in particular, seem poorly suited for direct
extension to external memory, because of the lack of locality in graph data. Current
approaches for designing external graph algorithms use either PRAM simulation tech-
niques [13], or else external data structures [4], [26] that do not completely address the
I/O implications of graph traversal.

We present a new divide-and-conquer approach for designing external graph algo-
rithms, which is simple to describe and implement. No sophisticated data structures
are needed. When unwinding the divide-and-conquer recursions, our algorithms effect
successions of graph transformations that reduce to sorting, selection, and a recursive
bucketing technique. We apply our techniques to devise external algorithms for com-
puting connected components, minimum spanning forests (MSFs), bottleneck minimum
spanning forests (BMSFs), maximal independent sets, and maximal matchings in undi-
rected graphs.

We focus on producing algorithms that are purely functional. That is, each algorithm
is specified as a sequence of functions applied to input data and producing output data,
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with the property that information, once written, remains unchanged. The function is
then said to have no “side effects.” A functional approach has several benefits. External
memory algorithms may run for hours or days in practice. As we argue below, the lack of
side effects on the external data allows standard checkpointing techniques to be applied
[27], [32], increasing the reliability of any real application. A functional approach is also
amenable to general purpose programming language transformations that can reduce
running time. (See, e.g., [37].)

Formally, we adapt the I/O model of complexity as defined by Aggarwal and Vitter
[2]. We parameterize a problem instance as follows:

N = number of items in the instance,

M = number of items that can fit in main memory,

B = number of items per disk block.

A typical compute server might haveM ≈ 109 and B ≈ 103. In general, 1< B <

M/2, andM < N. For some of our randomized algorithms, we also assume thatB =
O(N/ log(i ) N) for some fixed integeri > 0, where log(0) N = N, and log(i ) N =
log log(i−1) N for i > 0. We present our algorithms in the single-disk model; extending
them to parallel disks remains open.

For a graph, we defineV to be the number of vertices,E to be the number of edges,
andN = V + E. (We abuse notation and also useV andE to be the actual vertex and
edge sets; the context will clarify any ambiguity.)

Because our external algorithms rely on scanning and sorting as primitives, when
possible results are expressed in terms ofsort(N) = 2((N/B) logM/B(N/B)), the
number of I/Os needed to sortN items [2], andscan(N) = dN/Be, the number of
I/Os needed to transferN contiguous items between disk and internal memory. The
I/O model stresses the importance of disk accesses over computation for large problem
instances. In particular, time spent computing in main memory is not counted. A goal of
external algorithm design is to replace factors ofN in the time complexity by factors of
N/B in the I/O complexity (utilizing an entire disk block once it is read) and log2 terms
in the time complexity by logM/B terms in the I/O complexity (dividing problems into
M/B subproblems at a time).

The functional I/O (FIO) model is parameterized as above, but operations are re-
stricted to make only functional transformations to data, which do not change the input.
Once a disk block is allocated and written, its contents cannot be changed. This imposes
a sequential write-once discipline on disk writes. When results of intermediate compu-
tations are no longer needed, space is reclaimed, e.g., through garbage collection. The
maximum disk space active at any one time is used to measure the space complexity. All
of our algorithms use only linear space (i.e.,O(N/B) disk blocks).

Consider the implication of the functional approach on checkpointing. The only infor-
mation recorded about external files by standard checkpointing techniques [27], [32] is
the file-descriptor table in the kernel: i.e., which files are assigned to which file descrip-
tors, and the current seek positions within each file. Overwrites to disk blocks after the
most recent checkpoint therefore interfere with the correctness of the recovery process,
because data is not preserved as at the time of the checkpoint. Alternative checkpointing
methods copy open files during checkpoints, but this can be prohibitively expensive if the
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files are massive (as in the case of external memory algorithms), even with lazy copy-
ing techniques [38]. A functional external algorithm, therefore, lends itself to correct
checkpointing, increasing its robustness.

1.1. Problem Definitions. In all cases we assume that the input graph,G, is presented
as an unordered list of edges, each edge a pair of vertices plus possibly a weight. We
consider the following problems:

Connected components.A connected componentis the edge set induced by a max-
imal set of vertices such that each pair of vertices is connected by a path inG.
The output is adelineated listof edges,{C1,C2, . . . ,Ck}, wherek is the number
of components. EachCi is the list of edges in componenti , and the output is the
file of components catenated together, with a separator record between adjacent
components.

Minimum spanning forests. A minimum spanning forest(MSF) is a spanning forest
that minimizes the sum of the weights of the edges. The output is a list of edges
in the forest, delineated by trees.

Bottleneck minimum spanning forests. A bottleneck minimum spanning forest
(BMSF) is a spanning forest that minimizes the weight of the maximum edge.
The output is a list of edges in the forest, delineated by trees.

Maximal matching. A maximal matchingis a maximal set of edges such that no two
edges share a common vertex. The output is a list of edges in the matching.

Maximal independent set. A maximal independent setis a maximal set of vertices
such that no two vertices are adjacent. The output is a list of vertices in the
independent set.

1.2. Results. Our main contribution is the functional approach to external memory
algorithm design, which provides a uniform framework in which we can derive simple,
robust algorithms that match or slightly improve upon previous results for a host of graph
problems. Table 1 summarizes our results. For the external connected components, MSF,
and BMSF problems, the only known lower bound isÄ(sort(V)) [13]. (The BMSF lower
bound derives from that on connected components, given the stipulation of the output.)
No non-trivial lower bounds are known for external maximal matchings or maximal
independent sets.

Table 1. I/O bounds for our functional external algorithms.

Deterministic Randomized

Problem I/O bound I/O Bound With probability

Connected components O(sort(E)+ E
V sort(V) log2

V
M ) O(sort(E)) 1− eÄ(E)

MSFs O(sort(E)+ E
V sort(V) log2

V
M ) O(sort(E)) 1− eÄ(E)

BMSFs O(sort(E)+ E
V sort(V) log2

V
M ) O(sort(E)) 1− eÄ(E)

Maximal matchings O( E
V sort(V) log2

V
M ) O(sort(E)) 1− ε for any fixedε

Maximal independent sets O(sort(E)) 1− ε for any fixedε
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Chiang et al. [13] give deterministic connected components and MSF algorithms
that useO(sort(E) log2(V/M)) I/Os. The asymptotic I/O complexities of our de-
terministic connected components and MSF algorithms are slightly better, because
(E/V)sort(V) = (E/B) logM/B(V/B). Kumar and Schwabe [26] give algorithms for
breadth-first search (BFS, which can compute connected components) and MSFs that per-
form O(V+sort(E) log2(M/B))andO(sort(E) log2 B+scan(E) log2 V) I/Os, respec-
tively. Our connected components algorithm is asymptotically better whenV < M2/B,
and our MSF algorithm is asymptotically better whenV < M B. While the above algo-
rithms of Chiang et al. [13] are functional, those of Kumar and Schwabe [26] are not.
Our randomized connected components and MSF algorithms match the I/O performance
given by Chiang et al. [13].

The BMSF, maximal independent set, and maximal matching results are new. The
BMSF result derives directly from the MSF result; we state it to illuminate an open
problem that leads to a distinction in the relationship between the two problems in the
internal and external memory settings. The maximal independent set and matching results
come from straightforward externalizations of internal algorithms, but they emphasize
the utility of the functional design approach.

A recent paper by Munagala and Ranade [31] gives a deterministicO(max{1, log log
(VBP/E)}(E/V)sort(V)) I/O algorithm for connected components, whereP is the
number of parallel disks. While this improves upon our deterministic I/O bound for
connected components, some of our techniques (in particular the relabeling techniques
we describe in Section 3) can be used to simplify their implementation.

Finally, we consider asemi-externalmodel for graph problems, in which the vertices
but not the edges fit in memory. This is not uncommon in practice, and when vertices can
be kept in memory, significantly more efficient algorithms are possible. We design algo-
rithms, based on distribution sort [24], for external grouping and sorting with duplicates
and apply them to produce better I/O bounds for the semi-external case of connected
components.

There is much other work on external graph problems, in particular on depth- and
breadth-first search [9], [13], [26], [31], topological sorting [13], single-source shortest
paths [26], and transitive closure [13], [35]. Many of these rely heavily on graph traversal
(following an edge from one vertex to the next) and/or use heap data structures (discussed
in Section 2) and are not immediately amenable to our functional approach.

In Section 2 we sketch two previous approaches for designing external graph algo-
rithms. In Section 3 we describe our functional approach and detail a suite of simple
graph transformations. In Section 4 we apply our approach to design new, simple, deter-
ministic algorithms for computing connected components, MSFs, BMSFs, and maximal
matchings. In Section 5 we give randomized variants of our algorithms, including one
for maximal independent sets, with improved I/O bounds. In Section 6 we consider
semi-external graph problems and give improved I/O bounds for the semi-external case
of connected components. We conclude in Section 7.

2. Previous Approaches. While sorting and other “data rearrangement” problems are
well suited to external memory [2], graph problems do not generally present the data
locality needed to realize straightforward and efficient external-memory extensions of
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classical algorithms. The on-line nature of graph traversal makes it difficult both to
utilize a full disk block of edges once read (and so to reduceN time bounds toN/B
I/O bounds) and to divide a problem into many independent subproblems (and so to
reduce log2 x time bounds to logM/B x I/O bounds). External algorithms for some graph
problems have been designed, however, and here we sketch two current approaches for
doing so. (Munagala and Ranade [31] use neither approach to design their connected
components algorithm, exploiting an efficient undirected BFS algorithm instead. They
do use some results from Chiang et al. [13], in particular pointer jumping, which we
discuss in Section 3.)

2.1. PRAM Simulation. Chiang et al. [13] show how to simulate a CRCW PRAM
algorithm using one processor and an external disk, thus giving a general method for
constructing external graph algorithms from PRAM graph algorithms.

Given a CRCW PRAM algorithm onN processors, the simulation maintains on disk
(1) a copy of main memory in an array,A, sorted by memory address, and (2) a state
array,T , of N elements. LetA[i ] (resp.,T [i ]) be thei th element ofA (resp.,T). Location
T [i ] contains the (O(1) size) current state of processori .

A step of the PRAM algorithm is simulated as follows. Each step is begun with a list
D of tuples(d(i ), i ) whered(i ) is the memory address that processori will read in this
step.D is then sorted by the first component (memory address) of each record. We can
then scanA andD in tandem, writing a listR of records(r (i ), i ), wherer (i ) = A[d(i )].
List R is then sorted by second component (processor number), and the sortedR andT
are scanned in tandem. For each processori , T [i ] is updated toT ′[i ] using the read value
r (i ), and a listW of records(d(i ), w(i )) is written, whered(i ) is the memory address
written by processori in the simulated step andw(i ) is the value written. At the same
time, the listD of read locations for the next step is generated. ListW is sorted by first
component and scanned in tandem withA to produceA′, the simulated contents of main
memory after the PRAM step;T ′ contains the updated processor states.

Each step of the PRAM algorithm thus requires three scans and three sorts of arrays of
size|T |, and two scans ofA. Typically, therefore, a PRAM algorithm usingN processors
andN space to solve a problem of sizeN in time t can be simulated in external memory
by one processor usingO(t · sort(N)) I/Os. An extension to the simulation produces
the sameO(t · sort(N)) I/O bound for anyN-processor,O(N)-space PRAM algorithm
such that, after each of logN stages, each of timet , the number of active processors and
memory cells that will ever be used again is reduced by a constant factor.

The PRAM simulation works in the FIO model, if each step writes new copies ofT
and A. To the best of our knowledge, however, no algorithm based on the simulation
has been implemented. A direct implementation would require not only a practical
PRAM algorithm but also either a meticulous direct implementation of the corresponding
external memory simulation or a suitable low-level machine description of the PRAM
algorithm together with a general simulation tool. Rather, PRAM simulation is typically
used to prove the existence of an external memory algorithm of a given I/O complexity.
For example, Chiang et al. [13] describe the application of PRAM simulation to derive
O(sort(E) log2(V/M))-I/O connected components and MSF algorithms from the work
of Chin et al. [14]. The functional approach captures many of the results possible with
PRAM simulation and also produces robust algorithms, amenable to checkpointing.
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2.2. Buffering Data Structures. Another recent approach is based on external variants
of classical internal data structures. Arge [4] introducesbuffer trees, which support se-
quences of insert, delete, and deletemin operations onN elements inO((1/B) logM/B(N/
B)) amortized I/Os each. Kumar and Schwabe [26] introduce a variant of the buffer tree,
achieving the same heap bounds as Arge. Later works by Brodal and Katajainen [8] and
Fadel et al. [17] focus on improving the I/O complexity for individual operations. These
bounds are optimal, since the heaps can be used to sort externally. Kumar and Schwabe
[26] also introduce externaltournament trees. The tournament tree maintains the ele-
ments 1 toN, each with a key, subject to the operations delete, deletemin, and update.
Deletemin returns the element of minimum key. Update takes a pair(x, k), and sets the
key of x to min{key(x), k}: i.e., it reduces the key ofx to k if and only if the current key
exceedsk. Each tournament tree operation takesO((1/B) log2(N/B)) amortized I/Os.

The data structures of Arge [4] and Kumar and Schwabe [26] closely resemble clas-
sical, tree-based internal heaps. Each node maintains a large buffer (e.g., of sizecM for
some 0< c < 1) that stores operations. An operation (insert, delete, etc.) is performed
by adding it to the buffer of the root node. When a buffer becomes full, its operations are
percolated to the appropriate children buffers. An operation is effected when it “meets”
its operand in the tree. The maintenance procedures on the data structures are intuitively
simple but can involve many implementation details. In general, internal memory lim-
itations require that buffer emptying be performed in two stages (emptying half of a
buffer, recursively considering buffers of children, and then repeating to empty the rest
of the buffer), although in practice, simple one-stage versions can be implemented for
a restricted set of operations. Fadel et al. [17] describe a different tree-based data struc-
ture. Rather than maintain a tree, Brodal and Katajainen [8] maintain a set of sorted lists,
similarly subject to buffered updates, which engender incremental merges of the lists.

None of these data structures is functional. The tree-based structures [4], [17], [26]
require in situ replacement of nodes stored on disk; Brodal and Katajainen’s [8] update
scheme also relies on in situ replacement of disk blocks, to effect efficient catenation of
lists undergoing merging. The node-copying techniques of Driscoll et al. [15] could be
used to make them functional: any time a disk block is to be overwritten, a new, suitably
modified, copy is created instead. This incurs significant extra I/O overhead, however,
because any blocks pointing to the modified block must be likewise updated to point to
the new copy; such updates thus percolate to the root of the structure. The number of
I/Os required to modify a node in a tree (resp., list), therefore, would be proportional to
the depth of the tree (resp., length of the list).

Finally, while such data structures excel in computational geometry applications,
they are hard to apply to external graph algorithms. Consider computing an MSF. The
classical greedy algorithm maintains a growing MSF,F , and a heap of vertices outside
F . Each step performs a deletemin to attach the closest vertex,v, to F . Each neighbor,
w, of v is considered in turn. Ifw becomes closer toF by way ofv, thenw’s key in
the heap is decreased. (If the heap does not admit an appropriate update operation,w is
deleted and re-inserted into the heap.)

There are two obstacles to this approach in the external version of the algorithm. First,
finding the neighbors ofv is non-trivial, involving the creation of and indexing into an
adjacency list, which incurs at least one I/O for each vertex. Second, given a neighbor
w, determining the current key ofw (distance ofw to F) is problematic, for the data
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structures do not permit arbitrary searches. Without the key, however, it is impossible to
know whether or not to perform the update operation in the first place.

Intuitively, while the update operations on the external data structures can be buffered,
yielding efficient amortized I/O complexity, standard applications of these data struc-
tures in graph algorithms require certain queries (e.g., key finding) to be performed
on-line. Current applications of these data structures thus require ancillary data struc-
tures to obviate this problem, increasing the I/O and implementation complexity. For
example, Kumar and Schwabe [26] extend the classical undirected BFS and greedy MSF
algorithms to the external setting. They attack the key-finding problem using both the
tournament tree, with its particular update operation, and a heap, with keys encoded to
record the update strategy that should be effected as the algorithm progresses.

3. Functional Graph Transformations. In this paper we utilize a divide-and-conquer
paradigm based on a few graph transformations that, for many problems, preserve certain
critical properties. We implement each stage in our approach using simple and efficient
techniques: sorting, selection, and bucketing. We illustrate our approach with connected
components. LetG = (V, E) be a graph. LetCC(G) ⊆ V × V be a forest of rooted
stars (trees of height one) representing the connected components ofG. That is, ifrG(v)

is the root of the star containingv in CC(G), thenrG(v) = rG(u) if and only if v andu
are in the same connected component inG.

We define a contraction operation on vertex pairs: given a graphG, contractinga
pair of vertices,{x, y}, adds a new vertex,z, called asupervertex, to G, deletes vertices
x and y, and replaces all edges of the form{u, x} and {u, y} with the corresponding
edges{u, z}, discarding any loop edges{z, z}. (This generalizes the usual notion of
contraction, by allowing the contraction of vertices that are not adjacent inG.) Consider
a set,E′, of vertex pairs, and letG/E′ denote the result of contracting all vertex pairs
in E′. Intuitively, the contractions happen simultaneously; e.g., if{x, y} and{y, z} exist
in E′, thenx, y, andz are contracted into the same supervertex. More precisely, let
E′ = {{x1, y1}, . . . , {x`, y`}}. Let G′ = G/{{x1, y1}}, and letz be the supervertex into
which x1 andy1 were contracted. Consider the remaining setE′′ = E′ \ {{x1, y1}}, such
that each occurrence ofx1 andy1 in pairs inE′′ is replaced byz. ThenG/E′ is defined
to beG′/E′′, andG/∅ is defined to beG.

For any x ∈ V , let s(x) denote the supervertex inG′ = G/E′ into which x is
ultimately contracted; lets(x) = x if x is not in any pair inE′. The following lemma
shows how contraction preserves connected components.

LEMMA 3.1. If each pair in E′ contains two vertices in the same connected component
in G, then, for any u, v ∈ V , u andv are in the same connected component in G if and
only if s(u) and s(v) are in the same connected component in G′.

PROOF. Consider any edge{u, v} in G. By definition of contraction, eithers(u) = s(v)
or else{s(u), s(v)} is an edge inG′. Thus, for any path connecting two vertices,a and
b, in G, there is a corresponding (perhaps null) path connectings(a) ands(b) in G′.

Now consider any edge{µ, ν} in G′. Let s−1(µ) (resp.,s−1(ν)) be the set of vertices
in G that were contracted intoµ (resp.,ν). By assumption, all vertices in each ofs−1(µ)
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ands−1(ν) are in the same connected component. By definition of contraction, therefore,
there exists a path inG connecting each vertex ins−1(µ) with each vertex ins−1(ν).
Thus, for any path connecting two vertices,α andβ, in G′, there is a corresponding path
connectinga andb in G for all a ∈ s−1(α) and allb ∈ s−1(β).

We also define a relabeling operation. Given a rooted forestF as an unordered
sequence of oriented tree edges{(p(v), v), . . .}, and an edge setI , relabeling pro-
duces a new edge setRL(F, I ) = {{r (u), r (v)} : {u, v} ∈ I }, wherer (x) = p(x)
if (p(x), x) ∈ F , andr (x) = x otherwise. That is, for each edge{u, v} ∈ I , each ofu
andv is replaced by its respective parent, if it exists, inF .

Using contraction and relabeling, we derive the following simple algorithm to compute
CC(G), represented as an edge list:

Algorithm CC

1. Let E1 be any half of the edges ofG; let G1 = (V, E1).
2. ComputeCC(G1) recursively.
3. LetG′ = G/CC(G1).
4. ComputeCC(G′) recursively.
5. CC(G) = CC(G′) ∪ RL(CC(G′),CC(G1)).

LEMMA 3.2. AlgorithmCC correctly computes CC(G), a forest of rooted stars corre-
sponding to the connected components of G.

PROOF. SinceCC(G1) is a forest of stars, we can assume without loss of generality that,
when contracting byCC(G1), we use the root of each star as the canonical supervertex
for its component. Each vertex inG′ thus corresponds directly to its counterpart inG,
which is either the root of a star inCC(G1) or a vertex not included in any edge inG1.

By definition, two vertices are in the same star inCC(G1) only if they are in the same
connected component inG. Lemma 3.1 thus shows that two vertices are in the same
connected component inG′ if and only if they are in the same connected component inG.
ConsiderF = CC(G′)∪CC(G1). F is a forest of depth two, which, by the above argu-
ments, represents the connected components ofG. The relabelingRL(CC(G′),CC(G1))

effects a round of pointer jumping onF : each vertex of depth two becomes a child of
the root of its tree. ThusCC(G) as defined in step 5 is a forest of rooted stars.

We generalize the above into a purely functional approach to design external graph
algorithms. Formally, letfP(G) denote the solution to a graph problem P on an input
graphG = (V, E). For a subgraphG1 = S(G) ⊆ E of G, let T1 be a transformation
that combinesG and the solutionfP(G1) to create a new subgraph,G2. Let T2 be a
transformation that maps the solutionsfP(G1) and fP(G2), to a solution toG. We
summarize the approach as follows:

1. G1← S(G);
2. G2← T1(G, fP(G1));
3. fP(G) = T2(G,G1,G2, fP(G1), fP(G2)).
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In the connected components example,fP(G) was the forest of rooted stars corre-
sponding to the connected components ofG; G1 = S(G) was a subset of half the edges
of G; G2 = T1(G, fP(G1)) was the contraction ofG with respect to the connected
components ofS(G); andT2(G,G1,G2, fP(G1), fP(G2)) was the re-expansion of the
rooted stars infP(G2) into the solutionfP(G).

It is critical to realize that the transformations must preserve both solutions and
non-solutions to P. For example, contraction preserves the connected components of a
graph, so we can use it as above in a divide-and-conquer scheme to compute connected
components. On the other hand, while contraction preserves planarity, it does not preserve
non-planarity: non-planar graphs contain planar minors. Thus, it is not clear that we could
devise an external memory planarity testing algorithm using contraction in such a divide-
and-conquer scheme. In general, a lemma analogous to Lemma 3.1 must be demonstrated
with respect to the transformations used.

Our approach is functional ifS, T1, andT2 can be implemented without side effects on
their arguments. Below we show how selection, relabeling, contraction, and (vertex and
edge) deletion can be implemented functionally. In the following sections we use these
tools to design functional external algorithms for computing connected components,
MSFs, BMSFs, maximal independent sets, and maximal matchings.

3.1. Selection. Let I be a list of items with totally ordered keys.Select (I,k) returns
thekth biggest element fromI , including multiplicity; i.e.,|{x ∈ I : x < Select (I , k)}| <
k and|{x ∈ I : x ≤ Select (I , k)}| ≥ k. We adapt the classical algorithm forSelect (I,k)
[3]. Aggarwal and Vitter [2] use the same approach to select partitioning elements for
distribution sort:

1. PartitionI into cM-element subsets, for some 0< c < 1.
2. Determine the median of each subset in main memory. LetS be the set of medians

of the subsets.
3. m← Select (S, dS/2e).
4. LetI1, I2, I3 be the sets of elements less than, equal to, and greater thanm, respectively.
5. If |I1| ≥ k, then returnSelect (I1, k).
6. Else if|I1| + |I2| ≥ k, then returnm.
7. Else returnSelect (I3, k− |I1| − |I2|).

LEMMA 3.3. Select (I,k) can be performed in O(scan(|I |)) I/Os in the FIO model.

PROOF. Let T(|I |) be the number of I/Os needed to performSelect (I,k) for any k.
The analysis mimics that of the time taken by the classical algorithm [3].

The partitioning ofI into cM-element subsets and calculation of the medians can
be performed in one scan ofI . Similarly, givenm, the formation of the sublistsI1, I2,
and I3 can be performed in one scan ofI . Computingm recurses onI /cM elements.
One-half of the elements inS are no less thanm; each such element,m′, was the
median of a subset, and so one-half of the elements in that subset were no less than
m′. Thus, at least one-quarter of the elements inI are no less thanm. Symmetrically,
at least one-quarter of the elements inI are no greater thanm, and so theSelect s
in steps 5 and 7 recurse on no more than three-quarters of the elements inI . Thus,
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T(|I |) ≤ 2 · scan(I )+ T(|I |/cM)+ T(3|I |/4); by induction,T(|I |) = O(scan(|I |)),
assuming without loss of generality thatcM ≥ 5.

3.2. Relabeling. Given forestF and edge setI , we construct the relabeling,I ′ =
RL(F, I ) defined above, as follows:

1. SortF by source vertex,v.
2. SortI by second component.
3. ProcessF and I in tandem.

(a) Let{s, h} ∈ I be the current edge to be relabeled.
(b) ScanF starting from the current edge until finding(p(v), v) such thatv ≥ h.
(c) If v = h, then add{s, p(v)} to I ′′; otherwise, add{s, h} to I ′′.

4. Repeat steps 2 and 3, relabeling first components of edges inI ′′ to constructI ′.

As shown in AlgorithmCC, relabeling can be used to effect pointer jumping, a
technique widely applied in parallel graph algorithms [20]. Given a rooted forestF =
{(p(v), v), . . .}, pointer jumpingproduces a new rooted forestF ′ = {(p(p(v)), v) :
(p(v), v) ∈ F}; i.e., eachv of depth two or greater inF points inF ′ to its grandparent
in F . (Definep(v) = v if v is a root inF .) Our implementation of relabeling is similar
to Chiang’s [12] implementation of pointer jumping.

LEMMA 3.4. Relabeling an edge list I by a forest F can be performed in O(sort(|I |)+
sort(|F |)) I/Os in the FIO model.

PROOF. Step 1 usesO(sort(|F |)) I/Os; step 2 usesO(sort(|I |)) I/Os; step 3 uses
O(scan(|F | + |I |)) I/Os.

3.3. Contraction. Define asubcomponentto be a collection of edges among vertices
in the same connected component ofG; subcomponents need not be maximal. Given
a graphG and a listC = {C1,C2, . . .} of delineated subcomponents, thecontraction
of G by C is defined as the graphG/C = G|C|, whereG0 = G, and for i > 0,
Gi = Gi−1/Ci . That is, the vertices of each subcomponent inC are contracted into a
supervertex.

Let I be the edge list ofG, and assume that eachCi is presented as an edge list. (If
each is input as a vertex list, the following procedure can be simplified.) We form an
appropriate relabeling toI to effect the contraction, as follows:

1. For eachCi = {{u1, v1}, . . .}:
(a) Ri ← ∅.
(b) Picku1 to be the canonical vertex.
(c) For each{x, y} ∈ Ci , add(u1, x) and(u1, y) to relabelingRi .

2. Apply relabeling
⋃

i Ri to I , yielding the contracted edge listI ′.

For eachCi , one vertex,u1, is picked to be the canonical vertex into which all others
will be contracted. Step 1(c) adds an arc(u1, v) to the relabeling forest for each vertexv
in Ci . The result,Ri , is a star, rooted atu1, with a leaf for each other vertex that appears
in Ci . Each subcomponent,Ci , thus gets contracted into its canonical vertex in step 2.
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LEMMA 3.5. Contracting an edge list I by a list of delineated subcomponents C=
{C1,C2, . . .} can be performed in O(sort(|I |)+ sort(

∑
i |Ci |)) I/Os in the FIO model.

PROOF. Step 1 usesO(scan(|I |)) I/Os and produces a relabeling forest of size
∑

i |Ci |.
Applying Lemma 3.4 yields the final result.

We can also save with each contracted edge the corresponding original edge. As we
will see in Section 4.1, this facilitates later re-expansion.

3.4. Deletion. Given edge listsI andD, it is straightforward to constructI ′ = I \D:
simply sortI andD lexicographically, and process them in tandem to constructI ′ from
the edges inI but notD.

Similarly, given a vertex listU , we can constructI ′′ = {{u, v} ∈ I : u 6∈ U ∧v 6∈ U }.
SortU , and then sortI by first component; then processU andI in tandem, constructing
list I ′ of edges inI whose first components are not inU . Then sortI ′ by second
component, and process it in tandem withU , constructing listI ′′ of edges inI ′ whose
second components are not inU . We abuse notation and writeI ′′ = I \U whenU is a
set of vertices.

LEMMA 3.6. Deleting a vertex or edge set of cardinality N from an edge set I can be
performed in O(sort(|I |)+ sort(N)) I/Os in the FIO model.

4. Deterministic Algorithms. We adapt AlgorithmCC and use the transformations
from Section 3 to produce efficient, deterministic, functional external algorithms for
computing connected components, MSFs, BMSFs, and maximal matchings of undirected
graphs.

4.1. Connected Components, MSFs, and BMSFs

LEMMA 4.1. AlgorithmCC runs in O(sort(E) log2(E/M)) I/Os in the FIO model.

PROOF. Step 1 runs inO(scan(E)) I/Os. Sorting the edge list corresponding toCC(G1)

by target vertex suffices to delineateCC(G1) by component, so step 3 runs inO(sort(E))
I/Os, by Lemma 3.5. Step 5 runs inO(sort(E)) I/Os, by Lemma 3.4. Each of steps 2
and 4 recurses on at most half the original edges. Thus, ifT(E) denotes the overall
number of I/Os incurred on a graph ofE edges, we have thatT(E) ≤ O(sort(E)) +
2T(E/2). We stop the recursion when a subproblem fits in internal memory, soT(E) =
O(sort(E) log2(E/M)).

THEOREM4.2. The delineated edge list of components of a graph can be computed in
O(sort(E)+ (E/V)sort(V) log2(V/M)) I/Os in the FIO model.

PROOF. It suffices to compute a forest,F , of rooted stars corresponding to the connected
components, becauseF can be used to delineate the original edge list inO(sort(E))
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I/Os. We label each edge inE with its component inO(sort(E)) I/Os, by sortingE
(by, say, first vertex) andF (by source vertex) and processing them in tandem to assign
component labels to the edges. This creates a new labeled edge list,E′′. We then sortE′′

by label, creating the desired outputE′.
Thus, if E < V , we are done, by Lemma 4.1. Otherwise, we apply the sparsifi-

cation idea [16], partitioningE into dE/Ve lists of no more thanV edges each. We
compute the forest of rooted stars corresponding to the connected components of each
sublist, in O((E/V)sort(V) log2(V/M)) I/Os overall by Lemma 4.1. We then iter-
atively merge pairs of forests, each time replacing two such forests by the forest of
rooted stars corresponding to the connected components of their union. Again, this takes
O((E/V)sort(V) log2(V/M)) I/Os overall by Lemma 4.1. That the resulting forest
corresponds to the connected components of the original graph is shown by the same
correctness proof of AlgorithmCC. To see this, note that the correctness proof does
not depend on the number of edges selected in step 1. The sparsification approach
is equivalent to selectingV edges in step 1 ifE > V , and selectingE/2 edges
otherwise.

Algorithm CC specializes the standard greedy algorithm for MSFs by assuming that
all weights are uniform. We thus derive AlgorithmMSF, denoting byMSF(G) an MSF
of G, presented as an edge list.

Algorithm MSF

1. LetE1 be any lowest-cost half of the edges ofG; i.e., every edge inE\E1

has weight at least that of the edge of greatest weight inE1. Let G1 =
(V, E1).

2. ComputeMSF(G1) recursively.
3. LetG′ = G/MSF(G1).
4. ComputeCC(G′) recursively.
5. MSF(G) = EX(MSF(G′)) ∪MSF(G1).

The transformationEX(G′) expandsa contracted graphG′ as follows. During the
contraction that createdG′, each edge incident upon a supervertex corresponds to one
original edge, which is included in the record for the new edge.EX(G′) replaces each
contracted edge by its corresponding original edge. In AlgorithmMSF the contraction
in step 3 determines the original edges as follows. Consider contracting verticesx andy
into supervertexz. For each vertexu incident upon either or both ofx andy, a contracted
edge{z,u} is created. The edge{x,u} or {y,u} of smaller weight is chosen as the
original edge to install in the record for{z,u}. In case of a tie, either may be chosen
arbitrarily. The original edges are carried through the recursive calls; i.e., if{x,u} or
{y,u} were themselves contracted edges, then, having chosen the edge of minimum
weight between them, its corresponding original edge is installed as the original edge
for {z,u}. Correctness of AlgorithmMSF then follows by correctness of the standard
greedy algorithm for MSFs [25].

THEOREM4.3. An MSF of a graph can be computed in O(sort(E)+(E/V)sort(V) log2
(V/M)) I/Os in the FIO model.
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PROOF. The proof follows that of Theorem 4.2, using Lemma 3.3 to show that step 1
takesO(sort(E)) I/Os. The only complication is that the MSF returned in step 2 must
be delineated by components in order to apply Lemma 3.5 to perform the contraction in
step 3. To do so, we annotate the forest returned byMSF(·) with a corresponding forest
of rooted stars representing the components. In step 5, we combine the two rooted-star
forests representing the components ofMSF(G1) andMSF(G′) as in step 5 of Algorithm
CC. To produce the final result, we need only delineate the edge list ofMSF(G) as in
the proof of Theorem 4.2.

Algorithm MSF effects the standard greedy algorithm for computing a maximum-
weight basis of a matroid [39] as applied to graphic matroids. Given appropriate external
contraction and relabeling procedures, similar algorithms can be implemented for other
matroids.

Recall now that abottleneck minimum spanning forest(BMSF) minimizes the maxi-
mum weight of an edge. Since an MSF is also a BMSF, the I/O bound in Theorem 4.3
also applies to computing a BMSF.

We mention the BMSF problem because the internal BMSF algorithm of Camerini
[10] runs in O(E) time, faster than any known deterministic, comparison-based MSF
algorithm. Camerini’s algorithm is a one-sided recursion. If the lower-weighted half of
the edges span the graph, they contain a BMSF, and so the upper half can be discarded.
Otherwise, any BMSF contains an edge from the upper half, and so the lower half can
be contracted.

Whether BMSFs can be computed externally more efficiently than MSFs is an open
problem. If we could determine whether or not a subsetE′ ⊆ E spans a graph ing(E′)
I/Os, then we can use that procedure to limit the recursion to one-half of the edges ofE,
as in the classical BMSF algorithm. This would reduce the I/O complexity of finding a
BMSF to O(g(E)+ sort(E)) (sort(E) to perform the contraction).

4.2. Maximal Matching. Given a matchingM, denote byV(M) the set of vertices
matched byM. We can use the framework of AlgorithmCC to find a maximal matching
of a graphG = (V, E), denotedMM(G).

Algorithm MM

1. Let E1 be any non-empty, proper subset of edges ofG; let G1 = (V, E1).
2. ComputeMM(G1) recursively.
3. Let E′ = E\V(MM(G1)); let G′ = (V, E′).
4. ComputeMM(G′) recursively.
5. MM(G) = MM(G′) ∪MM(G1).

THEOREM4.4. A maximal matching of a graph can be computed in O((E/V)sort(V)
log2(V/M)) I/Os in the FIO model.

PROOF. Deleting matched vertices inMM(G1) fromG leaves a graphG′whose vertices
are disjoint fromMM(G1). Uniting a maximal matching ofG′ with MM(G1) produces
a maximal matching ofG, by the assumption of maximality ofMM(G1), and thus
Algorithm MM is correct.
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The analysis of the I/O complexity follows that in the proof of Theorem 4.2. IfE < V ,
then we chooseE/2 edges in step 1; otherwise, we chooseV edges. By Lemma 3.6,
step 3 can be performed inO(sort(N)) I/Os, whereN is the number of edges selected
in step 1.

To the best of our knowledge, the previous best result for external maximal match-
ing is O(sort(E) log3

2 V) I/Os, which can be obtained by applying PRAM simulation
techniques to the algorithm of Israeli and Shiloach [19].

5. Randomized Algorithms. We show how to externalize the randomized linear-time
MSF algorithm of Karger et al. [21]. The result is randomized functional algorithms
for connected components, MSFs, and BMSFs that incurO(sort(E)) I/Os with high
probability. Similar approaches were suggested by Chiang et al. [13] and Mehlhorn [30].

We can also implement randomized functional external algorithms for maximal in-
dependent sets and maximal matchings, based on algorithms by Luby [28] and Yang et
al. [40], respectively. Each usesO(sort(E)) I/Os with probability arbitrarily close to 1.

5.1. Connected Components, MSFs, and BMSFs. Consider a weighted graphG =
(V, E). A Bor

◦
uvka step[7], [21] selects and contracts the edge of minimum weight

incident on each vertex. (Ties are broken lexicographically.) Bor
◦
uvka steps are useful

for two reasons. First, each Bor
◦
uvka step at least halves the number of vertices in the

graph. Second, it preserves the MSF of the contracted graph. More precisely, letG be a
graph, letF be a subgraph ofG contracted in a Bor

◦
uvka step, and letG′ be the resulting

graph. Then the MSF ofG is the MSF ofG′ plus the edges inF .

LEMMA 5.1. If B = O(N/ log(i ) N) for some fixed integer i> 0, then a Bor
◦
uvka step

can be performed in O(sort(E)) I/Os in the FIO model.

PROOF. We implement the Bor
◦
uvka step as follows. InO(sort(E)) I/Os we identify

the minimum weight edge incident on each vertex: in turn, sort by first and second
components of each edge and scan to select the minimum weight edge. Call the set of
edges chosenF .

SinceF is a forest, it belongs to a family of sparse graphs closed under edge contrac-
tion. Therefore, we can find its connected components inO(sort(V)) I/Os using a result
of Chiang et al. [13]. (As noted in Section 2.1, the techniques of Chiang et al. are func-
tional. The assumption thatB = O(N/ log(i ) N) for some fixed integeri > 0 underlies
the list-ranking results used by Chiang et al. to find the components.) Labeling each edge
in F by its connected component allows us to rearrange the edges into a list delineated
by component, inO(sort(E)) I/Os. We can then contractE by F in O(sort(E)) I/Os,
by Lemma 3.5.

Arge [4] shows how to eliminate the restriction onB, although the result is not
functional. Kumar and Schwabe [26] also effect a Bor

◦
uvka step without this assumption,

again, though, not in a functional manner.
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Karger et al. [21] combine Bor
◦
uvka steps with a random selection technique that

also at least halves the number of edges, resulting in a linear-time randomized MSF
algorithm, which we can directly externalize. Their algorithm proceeds as follows:

1. Perform two Bor
◦
uvka steps, which reduces the number of vertices by at least a factor

of four. Call the contracted graphG′.
2. Choose a subgraphH of G′ by selecting each edge independently with probability

1/2.
3. Apply the algorithm recursively to find the MSFF of H .
4. Delete fromG′ each edge{u, v} such that (1) there is a path,P(u, v), from u to v in

F and (2) the weight of{u, v} exceeds that of the maximum-weight edge onP(u, v).
Call the resulting graphG′′.

5. Apply the algorithm recursively toG′′, yielding MSFF ′.
6. Return the edges contracted in step 1 together with those inF ′.

THEOREM5.2. If B = O(N/log(i ) N) for some fixed integer i> 0, then an MSF of
a graph can be computed in O(sort(E)) I/Os with probability1− e−Ä(E) in the FIO
model.

PROOF. Karger et al. [21] prove the correctness of the above algorithm. We can per-
form step 1 inO(sort(E)) I/Os, by Lemma 5.1. Step 3 recurses on a subgraph with
(expected) half the original edges. Step 4 can be accomplished via an MSF verification
step [21], which can be performed inO((E/V)sort(V)) = O(sort(E)) I/Os [13]. (The
restriction onB applies to the MSF verification step as well as the Bor

◦
uvka step. Again,

the techniques of Chiang et al. [13] are functional.) Karger et al. [21] show thatG′′

has, on expectation, aboutV/4 vertices andV/8 edges, whereV is the original vertex
set. Using these facts in the proof of Theorem 4.3 of Karger et al. [21] completes the
proof.

COROLLARY 5.3. If B = O(N/ log(i ) N) for some fixed integer i> 0, then the de-
lineated edge list of components of a graph can be computed in O(sort(E)) I/Os with
probability1− e−Ä(E) in the FIO model.

PROOF. The MSF of the graph yields its connected components.

COROLLARY 5.4. If B = O(N/ log(i ) N) for some fixed integer i> 0, then a BMSF
of a graph can be computed in O(sort(E)) I/Os with probability1− e−Ä(E) in the FIO
model.

PROOF. Any MSF is also a BMSF, so we can apply Theorem 5.2.

5.2. Maximal Independent Sets and Matchings. Recall Luby’s randomized maximal
independent set algorithm [28]:

1. I ← ∅; V ′ ← V ; E′ ← E.
2. Setd(v) to the degree of vertexv, ∀v ∈ V ′.
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3. Markv with probability 1/2d(v) if d(v) > 0 and probability 1 ifd(v) = 0,∀v ∈ V ′.
4. For each{u, v} ∈ E′ such that bothu andv are marked, ifd(u) ≤ d(v), then unmark

u; otherwise unmarkv.
5. I ′ ← {v ∈ V ′ : v is marked}; I ← I∪I ′; Y← I ′∪{v ∈ V ′ : ∃{u, v} ∈ E′ 3 u ∈ I ′}.
6. V ′ ← V ′\Y; E′ ← E′\Y.
7. If V ′ 6= ∅, repeat from step 2.

THEOREM5.5. For any fixedε, a maximal independent set of a graph can be computed
in O(sort(E)) I/Os with probability at least1− ε in the FIO model.

PROOF. Luby [28] shows thatI is a maximal independent set at the completion of the
algorithm. Each of steps 2–6 can be performed inO(sort(E)) I/Os. Step 2 sortsE (in
turn by each vertex) and then scansE to compute the vertex degrees, producing a listD
containingd(v) for each vertexv. Step 3 scansD to compute a listX of marked vertices.
Step 4 scansX, D, andE in tandem to apply the marks and degrees to the vertices. (This
requires a second sort ofE, by the second vertex component, and scan to mark both
components ofE.) ThenE is scanned to produce a listX′ of vertices to be unmarked.
X ← X\X′ can be computed by sortingX′ and scanning it in tandem withX. Step 5
sortsI ′ and scans it in tandem withE′ to produceY. Step 6 takesO(sort(E)) I/Os, by
Lemma 3.6.

Let T(E) be the number of I/Os used by the algorithm. Luby [28, Theorem 1] shows
that step 6 reduces the number of edges by an expected factor of at least one-eighth.
Theorem 1.4 of Karp [22] thus shows that

Pr[T(E) ≥ (8+ w)sort(E)] ≤ ( 7
8)
w

for every positive integerw.

Maximal matchings of a graphG correspond to maximal independent sets of its
associated line graph,L(G) [23]. L(G) can have as many asE2 edges, however, and so
Theorem 5.5 would give an I/O bound ofO(sort(E2)) for finding a maximal independent
set ofL(G) (and thus a maximal matching ofG). We therefore implement randomized
external maximal matching directly, using the following algorithm of Yang et al. [40]
(which is based on a similar algorithm by Israeli and Itai [18]):

1. M← ∅.
2. Set the label ofv to 0 with probability 1/2 and to 1 with probability 1/2,∀v ∈ V .
3. For eachu ∈ V such thatu is labeled 1, pick any adjacentv such thatv is labeled

0. (If u has no adjacent 0-labeled vertex, thenu makes no choice.) LetE′ be the
resulting set of{u, v} edges.

4. Let V ′ be the 0-labeled vertices among the edges inE′. For eachv ∈ V ′, pick any
one incident edge{v,w} ∈ E′. (Note thatw is labeled 1.) LetE′′ be the resulting set
of {v,w} edges.

5. M←M ∪ E′′.
6. E← E\E′′.
7. If E 6= ∅, repeat from step 2.
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THEOREM5.6. For any fixedε, a maximal matching of a graph can be computed in
O(sort(E)) I/Os with probability at least1− ε in the FIO model.

PROOF. Step 3 induces a set of stars,E′, each with a root labeled 0 and leaves labeled
1. Step 4 picks one edge from each star. ThusE′′ is a matching, and, at termination, M is
a maximal matching, by steps 5 and 6.

Step 2 takesO(scan(V)) I/Os; we can assume thatV is sorted by vertex at a one-time
cost of O(sort(V)) I/Os. Each of steps 3–6 can be implemented inO(sort(E)) I/Os.
Step 3 sortsE in turn by each edge component and traverses it in tandem withV to assign
vertex labels to the edge components. A second scan ofE (sorted by the first, or 1-labeled,
component) suffices to produceE′. Step 4 then sortsE′ by the second component (0-
labeled vertex) and scans the sorted list to formE′′. Step 6 takesO(sort(E)) I/Os, by
Lemma 3.6.

Let T(E) be the number of I/Os used by the algorithm. Yang et al. [40, Lemma
2] show that step 6 reduces the number of edges by an expected factor of at least
η = 1

4

[
1− e−1/3

]
. Theorem 1.4 of Karp [22] thus shows that

Pr

[
T(E) ≥

(
1

η
+ w

)
sort(E)

]
≤ (1− η)w

for every positive integerw.

6. Semi-External Problems. We now considersemi-externalgraph problems, when
V ≤ M butE > M . These cases often have practical applications, e.g., in graphs induced
by monitoring long-term traffic patterns among relatively few nodes in a network. For
example, a graph induced by telephone calls in the AT&T network has about 250 million
vertices but can have billions of edges (200–300 million edges for each day of traffic).
The ability to maintain in memory information about the vertices often simplifies the
problems.

For example, ifV ≤ cM for some suitable constant 0< c < 1, we can compute
the forest of rooted stars corresponding to the connected components of a graph in one
scan, using disjoint set union [34] to maintain a forest internally. To compute MSFs,
we similarly maintain a forest internally, first sorting the edge list by weight. (This is
Kruskal’s algorithm [25].) We can even eliminate the sort and compute MSFs inscan(E)
I/Os if we use dynamic trees [33] to maintain the internal forest. For each edge, we
delete the maximum weight edge on any cycle created. The total internal computation
time then becomesO(E logV).

Semi-external BMSFs are similarly simplified, because we can check internally if an
edge subset spans a graph. Semi-external maximal matching is possible in one edge-list
scan, simply by maintaining a matching internally.

This semi-external approach differs from that used by Chiang et al. [13] to implement
external depth-first search (DFS). Chiang et al. maintain a data structure internally on
the vertices, but they do not assume thatV = O(M) and thus that the data structure
fits entirely in main memory. Once it grows too large, information is compacted, and a
new phase of the algorithm is started. This results in anO(dV/Mescan(E) + V)-I/O
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algorithm for DFS. In contrast, our semi-external algorithms maintain the entire vertex
data structure in main memory at all times.

Having computed the intermediate forest data structure without sorting, consider
the final step of arranging the components in a delineated edge list. We can label the
edges by their components in one scan, and we can then sort the edge list to arrange
edges contiguously by component, insort(E) I/Os. The sorting bound is pessimistic,
however, if the number of components is small. Below we give an algorithm to sortN
records with keys in the integral range [1, K ] in O(scan(N) logM/B K ) I/Os. If there
are K distinct keys from an arbitrary universe, we get the same I/O bound with high
probability for the relaxed problem of grouping the records so that records with distinct
keys appear contiguously. These bounds are tight [29]. Therefore, ifV ≤ cM we can
compute connected components on a graphG = (V, E) in O(scan(E) logM/B C(G))
I/Os, whereC(G) ≤ V is the number of components ofG. In many applications,
C(G) ¿ V , so this approach significantly improves upon sorting. In the telephone-
graph example above, the number of connected components generated by a typical day
of data is less than 10 million; the number of components containing more than 10
vertices, in fact, is less than 10,000. These figures become even smaller as more edges
are processed.

6.1. Sorting with Duplicates. We externalize a version of distribution sort [24] to sort
N items with keys in the integral range [1, K ]. The basic idea is straightforward: the
items are partitioned intoM/B buckets, each of which contains items in a distinct range
of K B/M keys. KnowingK in advance (or calculating it in one scan) allows each key
to be assigned to its corresponding bucket. Each block in main memory is assigned
to hold items in a single bucket. As the input is read from disk, each item is assigned
to its appropriate memory block. When a memory block becomes full, it is written
to an appropriate place on disk to maintain the items from the corresponding bucket.
After processing the input, the buckets are sorted recursively. (We ignore that one extra
block of memory is required to allow scanning of the input; this does not affect the
bounds.)

To make the approach functional, care must be taken in the output. We assume that a
disk block can be addressed withO(1)memory cells. We can thus chain disk blocks into
a linked list without affecting the asymptotic space usage. Each memory block maintains
a pointer (initially null) to the first block in the linked list corresponding to its bucket
being output. When a memory block becomes full, it is output to a new disk block,
which is prepended to the list, and the pointer in the memory block is reset to point
to the new disk block. (Prepending does not require updating successive blocks in the
chain.)

After the input has been scanned, some memory blocks will be non-empty. Those
with non-null pointers are emptied in the above fashion, i.e., prepended to their respec-
tive bucket chains. The remaining memory blocks were never emptied during the scan,
because they never became full. These can be partitioned into contiguous ranges of keys,
each range maximally fitting in order between two chains of buckets that have been
written to disk. The final output is produced by scanning through the chains on disk, in
order, interspersing the ranges of keys remaining in main memory in order, to produce
a bucketed list requiring onlydN/Be disk blocks.
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THEOREM6.1. Sorting N records with keys in the integral range[1, K ] takes2(scan(N)
logM/B K ) I/Os in the FIO model.

PROOF. The upper bound follows from the above discussion. Every chain written
to disk contains at least one full disk block, which can be charged for the (at most
one) partial block prepended in the clean-up phase after the input has been scanned.
Each range containing keys never written to disk might result in only a partial
disk block being written in the clean-up phase, but each such range can be amor-
tized against the preceding chain, which contains at least one full disk block. (The first
range might be at the head of the output, but this accounts for at most one partial disk
block.)

The lower bound comes from Matias et al. [29], who improve the previous lower
bound based on duplicate elimination due to Arge [5] in the case whenM < B2.

Subsequently, Matias et al. [29] have shown how the above algorithm can be im-
plemented in place. While not functional, in-place sorting routines are important when
minimizing work space is critical.

COROLLARY 6.2. If V ≤ cM for some suitable constant c, the delineated edge list of
components of a graph can be computed in O(scan(E) logM/B C(G)) I/Os in the FIO
model, where C(G) is the number of components of the graph.

PROOF. By the discussion at the beginning of Section 6, we can label each edge by its
component inO(scan(E)) I/Os. Theorem 6.1 completes the proof.

Note that sorting solves theproximate neighborsproblem [13]: givenN records on
N/2 distinct keys, such that each key is assigned to exactly two records, permute the
records so that records with identical keys reside in the same disk block. Chiang et al. [13]
show a lower bound ofÄ(min{N, sort(N)}) I/Os to solve proximate neighbors in the
single-disk I/O model. Theorem 6.1 does not violate this bound, since in the proximate
neighbors problem,K = N/2.

6.2. Grouping with Arbitrary Keys. If the N records haveK distinct keys that span an
arbitrary range, we can still use the above scheme togroup them so that records with
identical keys appear contiguously in the output; records with different keys, however,
do not necessarily obey the total order.

During each recursive phase, we pick a hash function,h, independently and uniformly
at random from a family of universal hash functions [11] that map theK keys to the
range [1, bM/Bc]. When scanning the input, we useh to assign keys to buckets.

Equal keys are always hashed to the same bucket. When a bucket contains at most
M/B distinct keys, we can group its records in one additional scan. Linking the records
in the buckets output in the first phase, denoted byT , in which each bucket has no more
thanM/B distinct keys, therefore, produces the desired grouped output.
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THEOREM6.3. With probability at least1−1/K c for any fixed constant c, O(scan(N)
logM/B K ) I/Os suffice to group N items with K distinct keys from an arbitrary universe
in the FIO model.

PROOF. The properties of universal hashing [11] show that, in each recursive phase,
the expected number of distinct keys assigned to any bucket is a fractionM/B of the
number of keys being processed. Theorem 1.1 of Karp [22] thus shows that

Pr[T ≥ blogM/B K c + w + 1] ≤ K

(M/B)blogM/B Kc+w

for any positive integerw. In particular, letw = cdlogM/B K e + 1.

7. Conclusion. Our functional approach produces external graph algorithms that com-
pete with the I/O performance of the best previous algorithms, are simple to describe
and implement, and are conducive to standard checkpointing and programming language
optimization tools. An interesting open problem is to devise incremental and dynamic
algorithms for external graph problems. The data-structural approach of Arge [4] and
Kumar and Schwabe [26] holds promise for this area.

It remains open to determine whether or not testing a graph for connectedness (i.e.,
testing if the number of connected components is one) is as hard externally as computing
its connected components. An easier connectivity test could lead to an improved external
BMSF algorithm.

Finally, our procedure to implement a Bor
◦
uvka step is complicated by the fact that

we can only contract a list ofE edges inO(sort(E)) I/Os if they are delineated by
component. Kumar and Schwabe show how to contract an arbitrary set ofE edges in
O(sort(E)) I/Os, but their procedure is not functional. How to contract an arbitrary edge
list functionally in constant sorts remains open.
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