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Abstract. We describe a set of necessary conditions for a given graph to be the visibility
graph of a simple polygon. For every graph satisfying these conditions we show that a
uniform rank 3 oriented matroid can be constructed in polynomial time, which if affinely
coordinatizable yields a simple polygon whose visibility graph is isomorphic to the given
graph.

1. Introduction

Visibility graphs are fundamental structures in computational geometry. They find ap-
plications in areas such as graphics [15], [23] and robotics [18], yet very little is known
about their combinatorial structure. This paper addresses the question of characterizing
internal visibility graphs of simple plane polygons, henceforth simply called visibility
graphs. Two vertices of a simple polygon P are called visible if the open line segment
between them is either a boundary edge of P, or is completely contained in the interior
of the polygon. Note that in this setting, two vertices are considered to be invisible if
the open line segment between them passes through a third vertex of the polygon. The
visibility graph of a polygon is the graph whose vertices correspond to the vertices of
the polygon and edges correspond to visible pairs of vertices in the polygon. From the

* Historical Note: The main result of this paper was presented at the Graph Drawing Conference held in
Princeton in 1994 and an extended abstract version appeared in the corresponding proceedings [5]. Based on
that extended abstract, Streinu and O’Rourke [21] developed pseudo-visibility graphs which turned out to be
precisely the same class of graphs characterized here. Subsequently, Ghosh proposed in [13] a new necessary
condition for visibility graphs which we conjecture now produces again the same class of graphs introduced
in this work, namely, quasi-persistent graphs whose shortest paths satisfy three new conditions that we call
local-separability, path symmetry and path consistency. On a more personal level, at the time of this writing the
geographical coordinates of the second author are unknown. Any “visible” information will be appreciated.
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computational standpoint, the complexity of the recognition problem for visibility graphs
is only known to be in PSPACE [10]. It is not known to be in NP nor is it known to be
NP-complete.

Visibility graphs do not lie in any of the well known classes of graphs such as planar
graphs, chordal, circle or perfect graphs [10], [13]. The first set of necessary conditions
for a graph to be a visibility graph was obtained by Ghosh [12]. However, it was shown by
Everett [10] that these conditions were not sufficient. Further necessary conditions were
developed by Coullard and Lubiw [9], but they also showed that they are not sufficient.
Abello et al. [4] have strengthened these results by showing that the proposed conditions
are not sufficient, even for triconnected graphs, and in the case of the conditions of [10],
even for planar graphs.

In this paper we develop stronger necessary conditions for a graph to be a visibility
graph.

In order to show that a given set of conditions on a graph are sufficient for the graph
to be a visibility graph, one must demonstrate that every graph satisfying the conditions
can be realized as the visibility graph of a simple polygon in the plane. However, this
reconstruction problem appears to be quite difficult in the general case. In this paper
we solve a combinatorial version of the reconstruction problem for general visibility
graphs. We prove new necessary conditions for visibility graphs and show that these
conditions are sufficient to construct a uniform oriented matroid of rank 3 corresponding
to each graph in this class. These oriented matroids are combinatorial representations
of simple polygons realizing the graphs, in the sense that any affine realization of the
oriented matroids yields a simple polygon whose visibility graph is isomorphic to the
given graph. It would be sufficient to show that each of these oriented matroids is affinely
realizable, in order to obtain a characterization of visibility graphs of simple polygons.
The main results of the paper are the following:

e In Section 3 a class of graphs called quasi-persistent graphs is defined and it is
shown that visibility graphs are properly contained in this class. Quasi-persistent
graphs are recognizable in polynomial time.

e Several new necessary conditions are proven for a given quasi-persistent graph
to be a visibility graph (Section 4). These conditions strengthen Ghosh’s original
necessary conditions for visibility graphs.

e For each quasi-persistent graph satisfying these necessary conditions, a uniform
oriented matroid of rank 3 is constructed (in polynomial time) such that any affine
realization of the oriented matroid yields a simple polygon whose visibility graph
is isomorphic to the given graph (Section 5).

We have made a conscious effort to make the paper as self-contained as possible.

2. Definitions

Itis clear that every visibility graph is Hamiltonian and we therefore restrict our attention
to Hamiltonian graphs. We further assume that the graphs considered are undirected,
loopless and do not have multiple edges.

Let G = (V, E) be a Hamiltonian graph with a prescribed Hamiltonian cycle H. The
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vertices of G are labeled along H from O to n — 1. The vertex labeled i is denoted v;.
v;+1 and v;_; denote the predecessor and successor of v; on H. All subscript arithmetic
is modulo n. It will be convenient to think of G as being embedded in the plane so
that H forms a simple closed curve. In this setting, a traversal of H from v; to v;
in the order v;, vj41, ..., v; may be thought of as a counterclockwise traversal of H,
and the traversal that goes from v; to v; in the order v;, v;_y, ..., vj4+1, v; corresponds
to clockwise traversals. In this paper, unless specified otherwise, traversals of H are
implicitly assumed to be in counterclockwise order.

For any two vertices v; and vj, the ordered set {v;, vi11, ..., vj_1, v;} of vertices
encountered in traversing H from v; to v}, is called the chain from v; to v; and is denoted
chain[v;, v;]. This set of vertices constitutes a simple path in G. The chain from v;
to v;_1 is denoted chain(v;, v;). We also use chain[v;, v;) and chain(v;, v;] to indicate
left and right closed “intervals.” We emphasize that chain(v;, vy) and chain(vy, v;) are
always disjoint. We write v; < v; < vy if v; lies on chain(v;, vi).

e Blocking vertices
Two vertices v; and v; of G are said to be invisible if v;v; ¢ E. For an invisible pair
(vi, vi), a vertex v; is called an inner blocking vertex [12], relative to H, if v; lies
on chain(v;, ) and v,v, ¢ E for all v, on chain[v;, v;) and v, on chain(v;, v¢].
Similarly, a vertex v; is called an outer blocking vertex relative to H , for the invisible
pair v; v, if v; lies on chain(vg, v;) and v,v, ¢ E for all v, on chain(v;, v;] and
v, on chain[vg, v;). In general, v; is called a blocking vertex for the invisible pair
v; Uy, if it is either an inner or an outer blocking vertex for this pair. As an example,
in Fig. 1, vertices 0, 3, 6 and 9 are blocking vertices for the invisible pairs (1, 9),
(2, 6), (3, 7) and (0, 8), respectively.

o Ordered paths and separability
A simple path P = uou; ---u, is called an ordered path relative to H, if the
vertices in P are encountered in the order ug, uy, ..., u, when H is traversed
from ug. Similarly, a simple cycle C = wugu; - - - u,uy is called an ordered cycle
relative to H if the vertices in C are encountered in the order ug, u1, ..., u,, ugy (or
its reverse) when H is traversed from uo. Two pairs v;v; and vyv; are said to be
separable [12] with respect to a vertex v, if both v; and v; are encountered before
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Fig. 1. A g-persistent graph.
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vy and v; (or vice versa), when H is traversed from v,,. In this case we say that v; v;
and vy, are v,-separable; otherwise we say that they are v,,-inseparable. Note that
two pairs v;v; and vgv; are separable with respect to v,, when the two pairs do not
interlace on the boundary, (i.e. v; < v; < vr < v;) and v, lies on chain(v;, vx) or
on chain(vy, v;)).

In Fig. 1 the pairs (2, 6) and (1, 9) are not separable with respect to 3 and 0 but
they are with respect to 7. On the other hand, (7, 3) and (7, 0) are separable with
respect to 2.

3. Quasi-Persistent Graphs

‘We now introduce a class of graphs called quasi-persistent graphs, and show that visibility
graphs of simple polygons are contained in this class. This class is a natural generalization
of persistent graphs, a class originally introduced by Abello and Egecioglu [1].

3.1.

e Definition of quasi-persistence

A graph G with aHamiltonian cycle H is said to be quasi-persistent (or g-persistent)
relative to H, if for every triple of vertices v; < v, < v, suchthatv;v, andv;v, € E
and v;v; ¢ E, for all v; in chain(v,, v,), the following conditions hold:
— v, is adjacent to vy;
— for every v; in chain(v,, v,), at least one of the vertices v, or v, is a blocking
vertex for v;v;.
The graph in Fig. 1 is a g-persistent graph.
First neighbor before and after a pair of non-consecutive vertices
For a pair v;v; of non-consecutive vertices, let v, be the first vertex adjacent to v;
that is encountered on a clockwise traversal of H starting from v;_;. v, is called
the first neighbor of v; before v; and is denoted by pn(v;v;). Similarly, the first
vertex v, adjacent to v;, encountered on a counterclockwise traversal of H from
V41, is called the first neighbor of v; after v; and is denoted sn(v;v;). Since G
is Hamiltonian, pn(v;v;) and sn(v;v;) exist for every invisible pair v;v;, and they
are distinct. Also, note that the definition is not symmetric, i.e. it is not necessary
that pn(v;v;) and sn(v;v;) be the same as pn(v;v;) and sn(v;v;), respectively. The
g-persistence conditions imply that for any invisible pair v; v;, the vertices pn(v; v;)
and sn(v;v;) are adjacent in G, and at least one of them is a blocking vertex
for v;v;.
In Fig. 1 the pair (2, 7) has 0 and 3 as first neighbors.

Ears in Q-Persistent Graphs

Assume an ordering {v;, vy, ..., v,} of a Hamiltonian cycle H in a graph G (subscript
arithmetic is module n). A vertex v, is called an ear of G with respect to H if v,_1v,4;
is in E(G). Every vertex in Fig. 1, except 0,3, 6 and 9, are ears with respect to the
Hamiltonian cycle {0, 1, ..., 9, 0}.
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We show next a graph generalization of Meisters’ two ear theorem for simple polygons
and then we prove that g-persistent graphs (with at least four vertices) are closed under
ear deletion.

Ears Theorem. Any Hamiltonian graph G that satisfies the first q-persistence condi-
tion has at least two ears.

Proof. Any graph G that satisfies the first q-persistence condition must have two ver-
tices v; and vg, non-consecutive in the Hamiltonian cycle, such that v;v; is in E(G).
Moreover, if no vertex in chain(v;, v;) is an ear it implies that the subgraph induced by
chain[v;, v;] is a path. This implies the existence of an ear on chain(v;, v;) and one on
chain(vg, v;). O

Ear Deletion. Q-Persistent graphs (with at least four vertices) are closed under ear
deletion.

Proof. Let G, denote the Hamiltonian graph obtained from G by deleting an ear v, of
G. Suppose that G, is not g-persistent. This means that there exists a triple of vertices
V; < v, < v, in G, such that v; is adjacent to v, and v, but not adjacent to any vertex
in chain(v,, v,), for which the g-persistence of G, is violated. This implies that v, must
lie on chain(v,, v,) otherwise the g-persistence of G will be violated too. By the same
reason v; and v, must be adjacent in G. By applying the g-persistence conditions to the
triples v; < v, < v, and v; < v, < v, in G one concludes that v,v, and v, v, must be
edges of G.

Suppose now that the first g-persistence condition is violated, i.e. v,v, is not an
edge of G, and this means that it is also not an edge of G. Therefore considering the
invisible pair v, v, we conclude that the vertex pn(v,v,) and the vertex sn(v,v,) lie on
chain(v,, v;] and chain(v,, v, ], respectively (note that v, is adjacent to v, and v;).

We show now that v, = v,.. Suppose, to the contrary, that v, lies on chain(v,,v,_]. If
vy # v;, note that neither v, nor v, can be a blocking vertex for v, v,, since the pairs v, v;
and v,v, are in E. This contradicts the second g-persistence condition for the invisible
pair v,v,. Thus v, = v;. However, then, by the first g-persistence condition, v;v, is an
edge in E. This is turn implies that v;v, is also an edge of G,, which means that v; is
adjacent to a vertex distinct from v, in chain(v,v,) of G, and this is contrary to our
hypothesis.

So we may assume that v, = v,. Following arguments similar to those in the last
paragraph, we see that v, = v;. Now, since v, = v, is an ear of G, it cannot be a blocking
vertex for v,v,. By the second g-persistence condition it then follows that v, = v; must
be a blocking vertex for this pair. It then follows that no vertex in chain(v,, v;) is adjacent
to a vertex in chain(v;, v, ). This means that v, _jv,4| isnotan edge in G, contradicting the
assumption that v, was an ear of G. This concludes the case when the first q-persistence
condition is violated.

Now suppose that the second g-persistence condition is violated, i.e. neither v, nor
v, is a blocking vertex for an invisible pair v;v; in G, with v; lying on chain(v,v,) of
G,. This implies by definition that they are not blocking vertices for this pair in G. By
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assumption, v, is not a blocking vertex in G. Consider the pair v;v; in G. If v; lies on

chain(v,, v,), then v, = pn(v;v;) and v; = sn(v;v;). On the other hand, if v; lies on
chain(v;, v,), then v; = pn(v;, v;) and v, = sn(v;v;). For either of these pair of choices,
the second g-persistence condition is violated in G for the invisible pair v;v;. O

3.2.  Q-Persistent Graphs and Ghosh’s Conditions

Ghosh [12] gave the first set of necessary conditions for a given graph to be a visibil-
ity graph. These conditions which we henceforth call Ghosh’s original conditions are
summarized below.

Proposition 1 (Ghosh). If a graph G is the visibility graph of a simple polygon, then:

1. G has a Hamiltonian cycle H.

2. Every ordered cycle (relative to H) of length > 4 has a chord.

3. Every invisible pair in G has a blocking vertex relative to H.

4. If two invisible pairs are separable with respect to a vertex v, then v, cannot be
the only blocking vertex for both the invisible pairs.

Our g-persistent graphs satisfy the first and third conditions of Proposition 1 by
definition. In fact, the second g-persistence condition (ordered chordality) appears, at
first glance, to be much stronger than Proposition 1’s third condition. However, it can
be shown that the class of g-persistent graphs is equivalent to the class of graphs that
satisfies the first three conditions. This is stated in Theorem 2 below ([16] contains a
detailed proof).

Theorem 2. A graph G with a Hamiltonian cycle H is g-persistent relative to H if
and only if every ordered cycle of length > 4 has a chord and every invisible pair has a
blocking vertex (relative to H).

Thus, g-persistent graphs are not a fundamentally new class of graphs. The main
advantage of the above formulation is that the simpler structure of the definition makes
it easier to analyze and prove properties of the resulting class. It is interesting to note the
relationship between the two g-persistence conditions and conditions 2 and 3 of Propo-
sition 1. The first q-persistence condition is a “weaker” version of ordered chordality, in
the sense that graphs that are Hamiltonian and ordered chordal are properly contained
in the class of (Hamiltonian) graphs satisfying the first g-persistence condition. On the
other hand, the second g-persistence condition is a stronger version of condition 3 since
Hamiltonian graphs that satisfy the second g-persistence condition are properly con-
tained in the class of Hamiltonian graphs satisfying condition 3. However, when both
pairs of conditions are considered together, the classes become equivalent!

Since visibility graphs satisfy all four of Ghosh’s conditions, it follows from Theo-
rem 2 that visibility graphs are properly contained in the class of g-persistent graphs.
The following sections develop additional conditions for a g-persistent graph to be a
visibility graph and show that they encode enough information that allow us to recover
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an oriented matroid (chirotope). If the obtained oriented matroid is realizable it will
mean that our set of conditions is a characterization of visibility graphs of polygons.

Remark. We mention in closing that Theorem 2 together with the fact that conditions 2
and 3 of Proposition 1 can be checked in quadratic time [13] tell us that g-persistent graphs
can be recognized in polynomial time.

4. Novel Necessary Conditions for Visibility Graphs

We assume throughout this section that P is a simple polygon in the Euclidean plane
and that a g-persistent graph G is its visibility graph. Arbitrary points of the plane are
denoted as py, p,, etc. For two points p, and p,, the ray from p, in the direction of p,
is denoted ry,. For a vertex v; of G the corresponding vertex of P is denoted v;'. We also
use r;; to denote the ray from v} in the direction of v;. A polygon P whose visibility
graph is G is called a realization of the graph G. A given g-persistent graph that is a
visibility graph can have many different realizations.

4.1. Geometric Interpretation of Q-Persistence

Suppose W = wy, ..., wy is the sequence of neighbors of a vertex v; in G, obtained in
traversing H, with wy = v;11 and wy = v;—;.Inapolygon P realizing G, Zwiv;w;_; <
Zwgviw; for 1 < j < k — 1 (this is a well known fact). The second g-persistence
condition can now be interpreted geometrically: letv; < v, < v, be a triple of vertices in
G suchthatv;v,, v;v, € E andv;v; ¢ E forallv; onchain(v,, v,). For the corresponding
triple of points v;", v}, and vy in arealization P of G, there exists a unique segment v v; |
on the boundary of P, such that v; and v lie on chain[v,, v,], and for any ray r;, such
that Zv}_ v v; < Zvi_vipE < Zvf v} v;, the first segment on the boundary of P that
is intersected by ray r;, is v vy, ;. The fact to be emphasized here is that the segment
so obtained does not depend on the specific ray fixed, but only on the triple of points
involved (see Fig. 2).

For any vertex v; on chain(v,, vi], the vertex v, is a blocking vertex (in G) for
v;v; and for any vertex v; on chain[v,1, v,), the vertex v, is a blocking vertex for
v;v;. The segment vivy,, is called the split segment for the triple of points v/vyvy.
The corresponding edge in the graph is called the split edge. Intuitively, the split edge
determines which one of the points v, and v is involved in “physically” blocking a given
pair v;v; on chain(v,, v,) in a given polygon whose visibility graph is G. In general, the
split edge is not determined by the visibility graph alone. Different polygons with the
same underlying visibility graph may have different split edges for the same triple of
vertices in G.

The g-persistence conditions stipulate that for any invisible pair v;v; ¢ E of a g-
persistent graph G, at least one of the vertices pn(v;v;) or sn(v;v;) must be a blocking
vertex for the invisible pair. However, according to the discussion above, in any fixed
realization of G, at most one of these vertices “physically” blocks the corresponding
invisible pair of points in the realization. This motivates the following definitions.
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Fig. 2. Geometric interpretation of q-persistence.

4.2. Blocking Vertex Assignments

A vertex v, is called a primary blocking vertex for an invisible pair v; v; if v, is ablocking
vertex for v;v; and v;v, € E. By the definition of blocking vertices, the only possible
choices for the primary blocking vertices for v;v; are pn(v;v;) and sn(v;v;). Therefore,
if either of the vertices pn(v;v;) or sn(v;v;) is a blocking vertex for the invisible pair
v;v; in a g-persistent graph G, then it is called a primary blocking vertex for v;v;. The
g-persistence conditions imply that every invisible pair has at least one primary blocking
vertex. Also, the primary blocking vertices of the pair v; v; are not necessarily the same
as those for v;v; .

A blocking vertex assignment' for a g-persistent graph G is a function 8: E — V
such that, forall v;v; ¢ E, B(v;v;) is a primary blocking vertex for v;v;. Any g-persistent
graph has at least one blocking vertex assignment. If G is a visibility graph, then every
fixed realization, P of a given g-persistent graph, determines a particular blocking vertex
assignment for G as follows. For a triple v; < v, < v, of vertices of G, such that v;v,,,
viv, € E and v;v; ¢ E for all v; on chain(v,, v,), let v,’fv,’f+1 be the split segment in
P for the triple v;‘v;v; . We set B(v;v;) = v,, for all v; on chain(v,, v¢]. For all v; on
chain[vi,1, vy) we set B(v;v;) = v,. From the discussion in the last section, it follows
that B is a blocking vertex assignment for G. This blocking vertex assignment is called
a canonical blocking vertex assignment for G determined by the realization P.

We now consider the following problem: Given a g-persistent graph together with
a blocking vertex assignment 8, determine the conditions under which there exists a
polygon P whose visibility graph is G, and such that the canonical assignment on G
determined by P is 8. Such conditions will clearly yield a characterization of visibility
graphs. It turns out that blocking vertex assignments on g-persistent graphs must satisfy
four additional necessary conditions in order to be canonical assignments.

I Everett, in [10], also defines a similar notion, but the requirement that vertices in the image of the function
be primary blocking vertices makes the definition given here strictly stronger than the one in [10].
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A blocking vertex assignment is said to be locally inseparable if any two invisible
pairs v;v; and vgv; such that B(v;v;) = B(vrv;) = v, are v,-inseparable (see definition
in the last paragraph of Section 2). The following is a necessary condition for a blocking
vertex assignment to be a canonical blocking vertex assignment:2

Necessary Condition 1 (Local Separability). If B is a canonical blocking vertex as-
signment for a q-persistent graph G, determined by a realization P, then B is locally
inseparable.

Graph Occluding Paths versus Geometric Shortest Paths. In order to state the re-
maining necessary conditions we need to introduce the following definition. Given an
invisible pair v;v; in G, an occluding path generated by g, between v; and vy, de-
noted pathg(v;, vi) is a path v;ug - - - u,vx in G, such that uy = B(v;vy), ujv; &€ E, and
ujy1 = Buj,v) for 0 < j < r — 1. It is readily seen that a given blocking vertex
assignment determines a unique occluding path between every invisible pair of ver-
tices. It can also be shown that this path is simple and that every internal vertex on this
path is a blocking vertex for the invisible pair. For notational convenience, we identify
pathg (v;, v) with its underlying set of vertices.

When a graph G is the visibility graph of a polygon P, the graph theoretical notion of
occluding path corresponds to the geometric notion of shortest path under the geodesic
metric. This fact is stated in the following proposition.

Proposition 3. Let B be the canonical blocking vertex assignment for a visibility graph
G, determined by a fixed realization P. A vertex vy lies on pathg(v;, v;) if and only if v}
lies on the Euclidean shortest path in P between v} and v;.

Path symmetry and path consistency. The remaining necessary conditions arise as a
result of this correspondence between occluding and Euclidean shortest paths. A blocking
vertex assignment is called path-symmetric if for every invisible pair v;v; such that
pathg(v;, vk) = viug - - - u, Vg, we have pathg (vg, v;) = vu, - - - uov;. We denote this as
pathg (v, v;) = pathg (vi, vr). In other words, even though a blocking vertex assignment
is not symmetric in the blocking vertices it assigns to invisible pairs v; v; and v v;, it must
ensure the symmetry of the occluding paths generated under the assignment between
every invisible pair of vertices. Since Euclidean shortest paths between two points inside a
simple polygon are unique, it readily follows that canonical blocking vertex assignments
must be path-symmetric; this is Necessary Condition 2 below.

Necessary Condition 2 (Path Symmetry). If 8 is a canonical blocking vertex assign-
ment for a g-persistent graph determined by a realization P, then B is path-symmetric.

Path consistency conditions. The two remaining necessary conditions reflect the
constraints imposed on occluding paths, generated by canonical blocking vertex assign-

2 Everett [10] conjectures a similar result. However, since our definition of a blocking vertex assignment
is stricter, our local separability Necessary Condition 1 is stronger.
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ments, because of their correspondence with Euclidean shortest paths. A blocking vertex
assignment satisfying these two conditions is called a path-consistent assignment.

Necessary Condition 3. If 8 is a canonical blocking vertex assignment for a q-persistent
graph determined by a realization P, and if u, € pathﬁ(vi, uy) anduy € pathﬂ (uy, vy),
thenuy,u, € pathﬂ(vi, Vg).

Necessary Condition 4. If 8 is a canonical blocking vertex assignment for a q-persistent
graph determined by a realization P, and

L. Ifv, € pathﬂ (vi, v) is an inner blocking vertex for v;vy, then for all v, on
chain[v;, v,) and vy on chain(v,, ], v, € pathﬂ(vx, vy).

2. Ifv, € pathﬂ(vi, Vi) is an outer blocking vertex for v;vy, then for all v, on
chainlv,, v;) and v, on chain(vg, v,), v, € pathﬁ(vx, vy).

The proofs of Necessary Conditions 3 and 4 are based on the fact that Euclidean
shortest paths satisfy the above combinatorial conditions. It is natural to ask whether
all the above four conditions are independent of each other. It can be shown that in fact
they are. Namely, for any subset of these conditions, there exist g-persistent graphs for
which blocking vertex assignments can be constructed that satisfy only that subset and
no others. On the other hand, to contrast these conditions with those in Proposition 1,
Everett has exhibited a graph that satisfies Ghosh’s original conditions and yet it is
not a visibility graph. It can be shown that Everett’s example is a g-persistent graph
that does not have a blocking vertex assignment that satisfies condition 1. The graph in
Fig. 1 is a g-persistent graph that was shown not to be a visibility graph in [2]. It can be
shown that this graph has one blocking vertex assignment that is locally separable, and
another that is path symmetric and path consistent, but no one that satisfies all conditions
simultaneously.

4.3. Q-Persistence Ensures Symmetry and Consistency

Before moving along, one may wonder if there are g-persistent graphs which do not
have path-consistent and path-symmetric assignments. It is a little bit surprising that
the answer is no as stated in the following theorem. The proof relies on the fact that
g-persistent graphs are closed under ear deletion.

Theorem. If G is a g-persistent graph with respect to a Hamiltonian cycle H, then
G has a blocking vertex assignment, with respect to H, that is path symmetric and
path-consistent.

Proof. Assume that wy, wy, ..., w; is the ordered sequence of neighbors of a vertex v,
that is obtained by traversing the Hamiltonian cycle H, with wy = v,4; and wy = v,_;.
The first thing to notice is that g-persistence implies that any invisible pair w; wy (i < k)
has blocking vertex assignments only in the set {v,, wiy1, ..., Wr—1}.

Let v, be an ear of G and let v, v, be an invisible pair with v, € chain(w;, wj4,) for
some j,0 < j < s.If B is a path-symmetric and path-consistent blocking assignment for
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G, the subgraph of G obtained by deleting the ear v,, then the only possible choices for
B(vrv,) lie on the set {w;, wj4}. It can be shown that at least one of these two vertices
can always be chosen to extend B to a path-consistent and path-symmetric blocking
assignment for G. By the ears theorem, G, is also g-persistent and the result follows by
induction. O

Remark. The proof of the last theorem indicates that any set of conditions that char-
acterizes a visibility graph of simple polygons shall be preserved under ear deletion and
shall be recoverable from the neighborhood of the ear and its interaction with the ear
deleted subgraph. In this regard, the local separability condition is the only condition
that remains to be subject to further scrutiny. We point out later, some developments in
this direction.

In summary, we have shown that the conditions of Proposition 1 can be strengthened
to state that if a graph is a visibility graph, then it is persistent and has a blocking vertex
assignment that is simultaneously path-symmetric, path-consistent and locally separable.
The key question is whether these conditions are sufficient. In the next section we provide
a partial answer to this question. Namely, we show how to obtain a simplicial chirotope
associated with any g-persistent graph that satisfies our necessary conditions. It is worth
mentioning that these conditions have been proven to be sufficient for k-spiral polygons
when k < 2, and for funnel and staircase polygons. In the case that n < 7, the conditions
are also sufficient since every simplicial chirotope on that many elements is affinely
coordinatizable over the reals [14].

5. Q-Persistent Graphs and Oriented Matroids

We consider the problem of determining, given as input a g-persistent graph with a block-
ing vertex assignment satisfying the conditions of the previous section, a combinatorial
representation of a potential polygon whose visibility graph is isomorphic to the given
graph. The main result of this section is that such a combinatorial reconstruction appears
to be significantly easier than the actual reconstruction of the polygon.

Oriented matroids are a well studied combinatorial representation [7], [11], [17]
for point configurations. In the following we adopt the conventions of [7] and identify
oriented matroids with their representations by chirotopes. An equivalence proof for this
representation and the classical definition in terms of signed circuits of matroids may
be found in [17]. We are concerned here only with the definition of oriented matroids

of rank 3. Let 7,,, n > 3, denote the set of increasing triples from the set {0, ..., n — 1}
(i.e. 3-tuples (i, j, k) where i < j < k). A mapping x: 7, — {—1, +1, 0} (that can be
extended by alternation to the set of all ordered triples from {0, ..., n — 1}) is called a

chirotope if foralli,0 <i <n — 1, and all 4-tuples, 0 < j <k <l <m <n—1,
from {0, ..., n — 1} the set

x(, j,k)x(@,1,m)
x(, j,m)x (i, k1)

either contains {—1, 41} or equals {0}. The chirotope is called simplicial if its image is
contained in the set {—1, +1}.
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A chirotope is called coordinatizable if there exists an n x 3 matrix M such that for
any triple (i, j, k) € t,, x (i, j, k) agrees with the sign of the corresponding 3 x 3 subde-
terminant of M. The chirotope associated with a point configuration assigns to each triple
of points its orientation (given by the signed area). The fact that these subdeterminants
obey the chirotope conditions above follows from the well known Grassman—Plucker
identities (see [7]). Deciding if a given rank 3 oriented matroid is coordinatizable is
known to be NP-hard [2]. It is also polynomially equivalent to the decision problem for
the existential theory of the reals [19] and thus in PSPACE [8].

We now establish the existence of a simplicial chirotope, corresponding to every g-
persistent graph G with a blocking vertex assignment 8 that is path-symmetric, path
consistent and locally separable. Call such 8 a feasible blocking vertex assignment. The
chirotope has the property that any of its coordinatizations defines a simple polygon
whose visibility graph is isomorphic to the input graph and induces a canonical blocking
vertex assignment on G which is exactly 8. This chirotope, called the Normal Chirotope,
for the pair (G, B) can be constructed in polynomial time given G and .

Normal chirotope construction. Given a g-persistent graph G with a feasible block-
ing vertex assignment 8, we define a function x¢ g: 7, — {—1, 41} (thatcan be extended

by alternation to the set of all ordered triples in {0, ..., n — 1}), where
—1 if there exists an occluding path generated by 8 that contains
x(@, j, k)= the vertices v;, v; and vy,
+1 otherwise.

It is clear that x can be constructed from G and B in O (n*) time. Moreover, it defines
a simplicial chirotope. This constitutes the next result.

Theorem 4. If G is a g-persistent graph and B is a blocking vertex assignment that
is path-symmetric, path-consistent and locally separable, then x¢ g is a simplicial
chirotope.

Proof. The proof consists in checking from the definitions that for all i, 1 < i < n,
and all 4-tuples, 1 < j <k <[l <m <n,from{l,2,...,n} the set

x G, j, k)x @, 1, m)
—X(l, j’ l))((l,k, m) )
x(, j,m)x(, k1)

denoted (i | jklm), either contains {—1, 4+1} or equals {0}. We say that a five subset
(i | jklm) satisfies the chirotope condition if the above property holds. It is also useful
to note, by the alternating property, that a 5-subset satisfies the chirotope condition iff it
satisfies it for any permutation of the five elements in the subset. To simplify notation
we indicate x ([i, j, k]) simply as [i, j, k].

We first claim that if any five vertices v;, v;, v, vz, vy, lie on an occluding path
generated by B, then (i | jkIm) satisfies the chirotope condition.

To see this, let wy, wy, ..., w, be an occluding path between wy and w,. By the
alternating property we can assume that they occur in this specified order and prove that
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(i | jklm) satisfies the chirotope condition in that case. Since B is feasible, it follows
that any two consecutive vertices in the sequence v;, v;, Vg, V;, Un, are invisible and that
the intermediate vertices lie on the occluding path between them (this follows from
properties of blocking vertex assignments in g-persistent graphs). Thus [x, y, z] = —1
for any three vertices vy, vy, v, that occur in that order in the path. So the sign of each
of the triples involved in the chirotope condition is —1 and this implies the set contains
{—1, 4+1} as required. We invoke this claim several times in what follows.

Suppose that there exists a 5-subset for which (i | jkIm) does not satisfy the chirotope
conditions. By the alternating property we can assume that these vertices occur in the
same order of the traversal of the Hamiltonian cycle H.

We consider a number of cases and derive a contradiction on each case. Suppose
the set does not contain —1. In this case, each product in the set evaluates to +1. In
particular, [Z, j, I[i, k, m] = —1. Without loss of generality, assume [i, j, /] = —1 and
[i, k,m] = +1.

We have three possible scenarios. v; € pathﬂ (vi, v;) orv; € pathﬁ(vi, V) or v; €
pathg (v;, v;). We provide the argument for just one of these cases since the others are
completely symmetric.

If v; € pathg(v;, v;), the path consistency condition implies that v; is also in pathg (v;,
vr) and thus [i, k,I] = —1. Since, [i, j, m][i, k,I] = 1 this implies [i, j,m] = —1.
Again, three choices arise:

1. v, € pathg(v;, v;). This implies by path consistency that v,, € pathg(v;, vr) which
means that [i, k, m] = +1, contradicting our earlier supposition.

2. v; € pathg(v;, v,). This implies v; € pathg(v;, v), contradicting our assumption
that v; € pathg (v;, v;).

3.0 € pathﬂ(vj, vm). Since v; € pathﬂ(vi, v;) this implies that v; € pathﬂ(vj, v;).
Thus, v; € pathﬂ(vz, v,) and [i, [, m] = —1. This means that [i, j, k] = —1 and
again we have three choices:

e In case v, € pathﬂ (vi, vj), this forces vy € pathﬂ (v1, v;). We have now that
v; € pathf,(vm, V), v € pathﬁ (vi, vp) and vy € pathﬁ (vz, vj). Invoking the first
path consistency condition we get that all five vertices now lie on the occluding
pathg (v, v;), contradicting our earlier claim about any five vertices that lie on
an occluding path.

e In the case that v; € pathﬂ(vi, vr) we get that v; € pathﬁ(vm, V), v €
pathg (v;, vj) and v; € pathg(v;, vx) which together imply that all five vertices
lie on path/3 (U, Vi), which is a contradiction.

e Finally, if v; € pathﬂ (vj, v) observe that v; € pathﬂ(vl, v,,). This means that
v; v and v;v,, are v;-separable, contradicting that 8 was feasible to start with.

The cases when v; € pathﬁ(vi, v;) and v; € pathﬁ (vj, v;) are completely symmetric.
Of course we do not need to consider when the set does not contain +1. Here each
product evaluates to —1. In this case, too, the arguments are quite similar to the last case.
By exhaustively enumerating all the possibilities is not difficult to derive a contradiction
in each case. O

Although the above proof is tedious the methods used are elementary. Also, the con-
struction is simple and intuitive. If we could establish the coordinatizability of the above
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chirotopes in each case, this would characterize visibility graphs of simple polygons
completely.

Now, we show that if the Normal Chirotope is realizable, then the corresponding
realization yields a polygon whose visibility graph is isomorphic to G. Moreover, the
canonical assignment induced on the graph by the polygon is precisely 8.

Theorem 5. If the chirotope x¢. g of the previous theorem is realizable, then the nec-
essary conditions discussed in this paper fully characterize visibility graphs of simple

polygons.

Proof. Suppose that x¢ g is affinely coordinatizable. First note that the points vg, .. .,
v;_, in a plane realization together with the segments v; v, | (mod n) constitute a simple
polygon P. To see this notice that if 8 is feasible, it is impossible that x (i,i + 1, j) -
x(G,i+1, j+1) =—land x(j, j+1,i)-x(j, j+1,i4+1) = —1when|i—j| > 1.Inthe
realization this implies that no two segments of the polygon intersect, ensuring simplicity.
Also, note that since the chirotope is simplicial, the resulting point configuration is non-
degenerate.

Now consider a triple v;v,v, in G such that v; is adjacent to no vertex in chain(v,,
v,) but is adjacent to both v, and v, . Let vy v be the split edge for the triple v;, v, v,
that is determined by B. Interpreting the signs that 8 assigns to the ordered triples as
orientations of the corresponding triples of points, is not difficult to check the following:

e The interior of the triangle v/ v, vy contains no points of P.

e The points corresponding to chain(v,, v;) and the points corresponding to
chain[ve41, vg] lie on opposite half-spaces of the line containing v; v}, . Similarly,
the points corresponding to chain[v),, v;] and those corresponding to chain[vi1, vy)
lie on opposite half-spaces of the line containing v;v;.

Note also that by local-inseparability v; cannot lie both on an occluding path from
v, to a vertex on chain(v;, v,) and also on a path from v, to one on chain(v,, v;). This
together with the first item above, allows us to claim that v}, v; and v(’; , are visible from
each other. On the other hand, the second item above is the key to conclude that v is
invisible from all the points corresponding to those on chain(v,, v,).

Therefore, vy, and v; are successive neighbors of v} and viv;,, is the split segment
for this triple. A similar argument shows the converse case, that is when v, and v} are
the succesive neighbors of a vertex v, then the corresponding vertexes are all adjacent
to each other. Also, if the split segment determined by the realization is v v 41> then
the corresponding split edge determined by S for this triple is vivr4. Repeating the
argument for each such “minimal” triple shows that the coordinatization gives a simple
polygon P whose visibility graph is G and determines the canonical vertex assignment
BonG.

From the previous discussion and the fact that visibility graphs of simple polygons are
g-persistent and have blocking assignments that are simultaneously locally separable,
path symmetric and path consistent, the result follows. O
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6. Relation with Pseudo-Visibility and Stretchability

Based on a previous version of some of the results presented here [5], Streinu and
O’Rourke [21] define a notion of visibility among vertices and edges of pseudo-polygons.
They characterize the corresponding class of bipartite graphs and call it Vertex-Edge
Visibility graphs. This class encodes precisely the notions of split segments and split
edges as introduced in Section 4.1 where the geometric interpretation of q-persistence
is discussed. Their characterization corresponds precisely to choosing a blocking vertex
assignment that is locally separable, path-symmetric and path-consistent. Therefore, it
is not surprising that they are able to recover also (by different means) an oriented ma-
troid. In their case they work with pseudo-line arrangements but these are equivalent to
oriented matroids. Questions of straight line realizability are avoided in that work since
they start by defining visibility on pseudo-line arrangements. In summary, Theorem 4
is equivalent to their characterization of pseudo-visibility graphs. All this suggests that
the intrinsic difficulty of characterizing visibility graphs of simple polygons lies in our
lack of understanding of the “real” obstructions to stretchability of the Normal Chiro-
tope introduced in Section 5. We know at this point that this chirotope is realizable for
certain specialized classes of polygons which include spiral and 2-spiral polygons, fun-
nel polygons, monotone polygons and convex fans. We will describe these and related
realizability results in a forthcoming paper [1].

7. An Alternative Necessary Condition for Visibility

The g-persistent graph depicted in Fig. 1 has exactly four blocking vertexes (i.e. 0, 3, 6
and 9). Therefore all the invisible pairs must use them to block their visibility. Moreover,
because visibility graphs are hereditary with respect to ordered cycles any necessary
condition must behave accordingly. We know that g-persistent graphs are hereditary
by our Ears Theorem (Section 3). Moreover, they always have symmetric and path-
consistent block assignments, therefore the reason why any g-persistent graph will fail
to be a visibility graph is because the local-separability property, even if it is satisfied
for the entire graph, may fail when restricted to the subgraph induced by an ordered
subcycle. In [13] Ghosh has suggested a new condition for visibility graphs that exploits
this fact. The condition basically says that for any ordered subcycle C, the restriction
of the blocking assignment to the invisible pairs of C cannot assign more than |C| — 3
vertices. This makes perfect sense since the sum of internal angles of any simple polygon
on |C| vertices is (|C| — 2)180°. Ghosh uses this very succinct condition to offer an
alternate explanation of why the graph in Fig. 1 is not a visibility graph. The reason
is that any global blocking vertex assignment forces vertices 0, 3, 6 and 9 to be reflex
vertices and then the subpolygon 0, 2, 3, 6, 7, 9, 0 has six vertices out of which four are
reflex vertices and this is impossible. Notice however that even though this graph has
a local-separable blocking assignment (in our sense) it does not have one that satisfies
simultaneously the path symmetry and path consistency conditions. This together with
the fact that g-persistent graphs are ordered cycle hereditary suggests the following
conjecture:
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Conjecture. Graphs satisfying the conditions of Proposition 1 plus Ghosh’s new con-
dition discussed above (proposed in [13]) are not sufficient to recognize visibility graphs
of simple polygons.
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