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Abstract—

Making sense of large graph datasets is a fundamental and
challenging process that advances science, education and technol-
ogy. We survey research on graph exploration and visualization
approaches aimed at addressing this challenge. Different from
existing surveys, our investigation highlights approaches that
have strong potential in handling large graphs, algorithmically,
visually, or interactively; we also explicitly connect relevant works
from multiple research fields – data mining, machine learning,
human-computer ineraction, information visualization, informa-
tion retrieval, and recommender systems – to underline their
parallel and complementary contributions to graph sensemaking.

We ground our discussion in sensemaking research; we
propose a new graph sensemaking hierarchy that categorizes tools
and techniques based on how they operate on the graph data (e.g.,
local vs global). We summarize and compare their strengths and
weaknesses, and highlight open challenges. We conclude with
future research directions for graph sensemaking.

I. INTRODUCTION

Making sense of the world is an important part of our
everyday lives: researchers want to familiarize themselves with
a new field’s literature; analysts want to detect suspicious ac-
tivities before their severity escalate. Gaining insights through
making sense of large amounts of data is a fundamental
process that advances science, education and technology. In
many domains, datasets can often be represented as graphs or
networks, as in online social networks (who is connected to
whom), network traffic (which computers are communicating),
intelligence analysis (who is communicating with whom), and
online auctions (who is buying from whom). In this survey,
we will use the terms graph and network interchangeably.

Today, making sense of large graphs remains a funda-
mental challenge, with few tools that allow users to interac-
tively explore, visualize, and understand million-scale graphs.
Data mining and machine learning research has made great
strides in developing scalable algorithms, but they typically
do not designed to support interactivity or sensemaking tasks.
Conversely, principles from human-computer interaction and
information visualization that excel in promoting user insight
have difficulties scaling to enormously rich information envi-
ronments with millions of items.

A. Graph Sensemaking

Graph sensemaking refers to the iterative process of under-
standing and making sense out of graph-formatted data, where

a user gradually builds up a representation of the information
space to achieve the user’s goal [38].

The organizational and cognitive literature has provided a
number of theories and models for how people make sense of
data (here we focus on graphs). They include Russell et al.’s
cost structure view [38], Dervin’s sensemaking methodology
[39], Klein et al.’s data-frame model [40], and the notional
model by Pirolli and Card [41]. While their details may differ,
they generally agree that sensemaking is a dynamic, iterative
process that involves tasks such as searching, filtering, orga-
nizing information, creating schemas, and building evidence.

Furthermore, theories often suggest two predominant
sensemaking paradigms: top-down or global views and
bottom-up or local views. Global approaches, best charac-
terized by Shneiderman’s mantra “overview, zoom & filter,
details-on-demand” pattern in visual information seeking [42],
have conventionally received much attention and have worked
well for numerous kinds of data in many domains [43],
[44], [45], [46], [47], [48], [49], [50], [42]. However, in this
big data era, top-down approaches that focus on providing
overviews of global information landscapes face significant
challenges when applied to graphs with millions or billions of
nodes and edges [49], [50]: graph overviews for large graphs
are time-consuming to generate [8], [7]; the seminal work
on graph clustering by Leskovec & Faloutsos [9] suggests
there are simply no perfect overviews (i.e., no single best
way to partition graphs into smaller communities), a view
echoed by sensemaking literature in that people may have very
different mental representations of information depending on
their individual goals and prior experiences [51].

Graph sensemaking is a complex and abstract task, highly
dependent on both domain and data. For this reason, it is
highly unlikely that a single visualization will be sufficient
for all sensemaking tasks. In this article, we will cover the
works in both global and local paradigms needed for graph
sensemaking. We have constructed a graph sensemaking hier-
archy and placed relevant works in it accordingly (see Figure
1). In our summary and description of numerous approaches,
we will focus especially on the scalability (both visual and
computational) and interaction techniques used to improve
various aspects of graph sensemaking.



Graph Sensemaking

Global View

Filtering [1], [2], [3]
Sampling [4], [5], [6]
Partitioning [7], [8], [9], [10]
Clustering [11], [12], [13], [3], [14], [15]

Local View
Free Discovery Exploration [16], [17], [14], [18], [3], [15], [19], [20], [21]

Network Motifs [22], [23], [24], [25], [26]

Targeted Discovery Pattern Matching [27], [28], [29], [30], [31]
Navigation [32], [33], [34], [35], [36], [19], [37]

Fig. 1. Graph sensemaking hierarchy of published graph exploration and visualization techniques covered in this survey, organized by their roles. Local
views are broken down into free discovery, wherein there is no particular known objective, and targeted discovery, where the user has a direct data-centric goal.

B. Scaling up Graph Sensemaking: Interactive Sensemaking
& Scalable Algorithms

Exploration is a natural first step for a user trying to un-
derstand an unfamiliar graph dataset. We distinguish between
(1) exploration, which is more open-ended, and (2) navigation,
which has a particular data-centric objective.

With the challenge of exploring an large quantity of data,
analysts need a combination of tools to support their abilities
and interests [52]. In this survey, we highlight recent research
that supports this view, and explore the intricate relationship
between scalable algorithms and interaction design of many
graph-based techniques. For example, visualization techniques
like filtering and data-centric techniques like sampling and ap-
proximate pattern finding can work togther to direct expensive
computation to much smaller regions of the graph that the user
cares about; slow analytics algorithms could hinder interaction,
frustrate the user, and reduce discoveries.

Interactive & Adaptive Views Consider a user interested
in making sense of the genres in a large artist-to-artist music
graph. The overall style of the users’ investigation may vary in
several ways. How different users select new content may be
very different [14]; are they interested in a global perspective
(e.g. what genres do I listen to most?) or more local perspec-
tives (is there another artist with music like this?) [32].

These questions can be phrased generally for graphs: is
the user’s investigation mostly detail oriented around certain
nodes, or does it concern much larger regions of the graph?
Traditional global views offer the user intuition about where
their nodes of interest fall in general terms, while local
exploration will help the user find detailed information on
individual nodes and their neighborhood.

For users browsing locally, they may start looking at
different initial genres (e.g. pop vs rock) putting them in
different regions of the graph. Among these graph explorers,
do most stay in the egonet of where they started or do they
traverse larger regions of the graph [33]? Are there coherent
patterns in the features of investigated nodes (either for a single
user or globally for many)? If so, how can these patterns
be leveraged to improve the quality of the tools used in the
users’ searches [34]? When a single user explores a dataset
in search of insight they are traversing a rich data landscape;
why not use contemporary machine learning and data mining
techniques to better understand how and what they are looking
for during their exploration. Combining information retrieval,
machine learning, and data mining with graph exploration is
enormously important to answering these questions.

Scalable Algorithms Real-time interactivity is crucial to

sensemaking. Scalability has been a top priority and success
measure in prior and ongoing work [53]. The scalability goals
of graph exploration are very different from efforts that aim
to visualize the whole graph. Today, it is feasible to lay out a
million-node graph, but extreme visual complexity (“hairball”)
often result [54], suggesting that even if algorithms may run
on the whole graph, one may want to only visualize the parts
relevant to the user’s sensemaking. Recent works have begun
to focus on scalable node-local computation, like [55] which
can extract a node’s 3 million-node egonet in under 150ms.

We are witnessing the birth of interactive systems that
integrate scalable machine learning and data mining algorithms
with usable user interfaces [14], [56], [57], such as running
graph-based inference algorithms (e.g., Belief Propagation)
over million-node graphs in sub-second speed in a background
thread, keeping the interface responsive. (Recent research
reduces that run time even further [58], [59].) More interactive
tools can now perform incremental data mining techniques
during the user’s interaction latency [31]. And some are
integrating data-centric approahces such as pre-computation,
approximation, and early algorithm termination, by making the
systems aware of the I/O and screen bottlenecks and by the
careful adoption of such new algorithms [60], [61], [30].

In this survey, we will cover many of the tools, techniques,
and contemporary research topics that contribute to graph
sensemaking. In Section II, we cover the scalability and
techniques needed for graph exploration and visualization.
In Section III, we discuss graph interaction techniques and
the tools that have pioneered them. Finally we discuss future
research directions in Section IV.

II. GRAPH EXPLORATION AND VISUALIZATION

Graph visualization is a challenging area with growing
interest spurred by the burgeoning of network datasets. Many
tools and techniques have been developed to facilitate discov-
ery; Herman et al. covered much of the initial work in graph
visualizations [62]. However, a more recent survey [63] by
Landesberger et al. investigated the rich variety of new graph
visualization methods since 2000. Both of these works focus
primarily on static graphs. The state of the art of dynamic
graph visualization was recently covered in [64].

Our survey differs from previous surveys both in scope
and focus. While our investigation includes works shared
among the previous surveys, ours analyzes the scalability
and interaction design of the different approaches and tools
necessary to the graph sensemaking process (in Section III).

Many graph datasets do not contain spatial node positions,



leaving their spatial layout as an exercise for the analyst. Sig-
nificant research has been done by graph drawing communities
investigating how to lay out and summarize entire graphs [65].

A. Visualization & Exploration Techniques

For graphs that are too large to display at once in full
detail, several classes of approaches have been proposed to
make them more manageable for exploration. They include
sampling, filtering, partitioning, and clustering.

Graph Sampling Instead of drawing the en-
tire graph, many approaches sample or filter a
subset to reduce a graph’s size. Both stochastic

and deterministic approaches have been proposed to solve this
problem. The stochastic approaches use random sampling tech-
niques to capture a smaller representative graph. A comparison
of these approaches and others can be found in [4] and [6].

Sampling graphs to maintain their properties is a challeng-
ing task especially with scale-free or other power-law graphs.
Lee et al. investigated statistical properties of various sampling
techniques and found that the method for sampling could
heavily bias topological properties like betweeness centrality,
assortativity and clustering coefficient [5]. Their work provides
important criteria for avoiding biased estimates given different
input topologies.

Graph Filtering Deterministic sampling and
filtering approaches have also been proposed
to reduce graph size. Jia et al. have shown that

filtering by the approximate betweeness centrality will reduce
the graph size while still maintaining the essential structure of
the graph [1].

Edges also contribute heavily to visual clutter when draw-
ing a graph. Techniques like edge bundling can be used to
decrease the amount of space edges take [2].

Many networks have such incredible scale that large graph
visualizations are not sufficient to perform all exploration
tasks. High quality sensemaking for large graphs requires more
information than can be summarized at a high level view.

Graph Partitioning To improve visual com-
prehensibility, graph summarization tech-
niques are often used. There are multiple

avenues to accomplishing this goal: structural summarization,
attribute summarization, and a combination of the two.

A common approach to creating an overview graph is to use
partitioning methods on the graph and visualize the partitions
[7], [8], [9]. Large graph partitioning is a computationally
expensive step and in cases of scale-free and near scale-
free networks the partitions may be exceedingly poor [9].
A recent approach called PULP was designed to partition
small-world networks and has demonstrated improvements
over conventional spectral methods as well as METIS [10].

Many of these methods can scale to the largest of graphs;
however, they may take thousands of cores and hours to run.
For this reason, partitions are often precomputed and cannot
be rerun dynamically during interaction.

Graph Clustering Another approach is to
create clusters of nodes with similar attributes
or to use online analytical processing (OLAP)

techniques to roll-up all nodes with a common attribute. In
[11], Tian et al. demonstrate SNAP; which creates a summary
graph by allowing user-specified attributes to determine node-
node similarity; and k-SNAP which automatically generated
subgroups allowing a user to drill-down or roll-up levels of
summarization. The k-SNAP system works by using OLAP-
style aggregation to roll-up multiple nodes by a given attribute,
which can be done or undone multiple times, allowing a user
to roll-up or drill-down their summary graph. OLAP reduction
techniques can be performed quickly for real time systems;
however, they do not always produce intuitive reductions.

Combining both structural and attribute information yields
a reduced version of the graph where the clusters are both
structurally tight and of similar attributes [12], [13]. Zhou
et al. proposes a novel distance measure that combines both
structural distance as well as node attribute similarity [13].
PivotGraph [12] aggregates nodes and edges based on their
attributes; however, it uses a grid-based layout to focus on the
relationship between nodes’ attributes and connections.

Clusters may also be human-generated, as in [14], [66].
Allowing users to generate and customize their own clusters
makes exploration more flexible to changes in input datasets.
Rather than relying on a force-directed layout, Schneider-
man and Aris propose a static graph layout called semantic
substrates [66]. Semantic substrates are user-defined, non-
overlapping regions in which the nodes are placed according
to their attributes. These regions allow users to control edge
visibility to provide comprehensibility of each link’s source
and destination.

B. Global and Local Views

Global View Challenges Top-down ap-
proaches give an overview of the data by
drawing a large, often summarized version of

the whole graph dataset. We have analyzed the challenges for
top-down graph visualizations:

• Spatial placement of nodes and edges [66]
• Visual incomprehensibility from the number of overlap-

ping nodes and edges [2]
• Representation of node attributes or other node and/or

edge information [12], [13]

Often overcoming issues with both visual and computational
scalability is a problem for global views. Global views provide
high-level information about the structure of a graph.

Local View Challenges Local views comprise
visualizations in which only a relatively small
subset of the entire graph data is shown. In our

hierarchy (see Table 1), we taxonomize local views further into
those which have an initial objective (Targeted Discovery) and
those which are more open-ended (Free Discovery), because
their design and interaction are often significantly different.

Because only subgraphs are displayed at a time, these
approaches tend to improve visual comprehension, require
less computation, but may decrease global insight. A major



strength of local views is that algorithms often only need to
run on subgraphs, potentially improving scalability. With these
strengths, come important challenges:

• at which nodes or subgraphs to start the exploration [67],
[57]?

• if a user has a particular goal in mind, can it be predicted
by their interactions?

• how will users interact with the system to explore their
graph [14]?

• a node may have too many neighbors to draw, can the
right nodes be suggested dynamically?

Free & Targeted Discovery Graph naviga-
tion and exploration are similar techniques.
However, navigation implies that a general

destination or objective is known, whereas tools designed for
exploration have no such known target. Bottom-up exploration
in hierarchical graphs was first investigated in [16] and later
expanded on by [17] to incorporate the idea of “degree of
interest” to help users identify which nodes to explore. Systems
like Apolo [14] do not impose an hierarchy on the data,
allowing users to freely define their own clusters, which Apolo
incorporates into its machine learning algorithm to infer which
nodes the users may want to explore next.

Information retrieval research has focused on scalable
approaches to analyze the web-browsing and paths users
traversed as they explored the web for millions of users. Click
trails have been used to improve the ranking of search results
[33], [34]. In many cases, the destinations of such trails can be
used directly as search results [35], or even to teleport the user
directly to the desired page [36]. Such ideas and techniques
may improve the quality of graph exploration tools, yielding
more immediately interesting suggestions to the user.

West et al. studied users’ abilities and wayfinding tech-
niques as users crawled Wikipedia [32]. They observed a trade-
off wherein users would prefer conceptually simple solutions
at the cost of efficiency. In their wayfinding tests, they also
investigated how to learn the users’ intended targets from their
initial movements through Wikipedia pages.

C. Subgraph Mining

Domains from bioinformatics to intelligence analysis often
seek particular subgraphs from their data. We taxonomize
subgraph mining into two separate areas; pattern matching, in
which the user already has some idea of the pattern they seek,
and network motif generation, where the common subgraphs
are algorithmically detected.

? Pattern Matching Pattern matching is an-
other bottom-up technique that can aid in
exploration tasks, where the user specifies a

subgraph of interest (i.e., a graph query) and the matching
algorithm looks for simliar instances from a much larger graph
(usually called the data graph).

At its heart, graph pattern matching is a variation of the
subgraph isomorphism problem, an NP-complete task of de-
termining if a given graph is a subgraph of another graph [68].
Exact graph pattern matching is computationally expensive and
hard to parallelize. One sensible approach is to search for

approximate matchings while another is to leverage special
domain attributed subgraphs.

There are a few recent systems that offer approximate
subgraph matching, which all focus on large scale techniques.
These include MAGE [28], Graphite [69], NeMa [27], TALE
[29], and TopKDiv [30]; to name a few. This is essential
in scenarios where the user already knows of an interesting
pattern exactly or approximately, and wants to find where or
how often it occurs in a larger graph.

Many of these systems did not focus on the visualization
of the query and results, but rather on the algorithmic and data
mining challenges. There is a lot of potential to do background
computation during the user’s interaction as they build their
query. Fan et al. exploited this idea in order to hide the large
latencies of graph querying by constructing partial results as
a user specified their query pattern [31], [30].

Frequent Subgraph Mining & Network
Motifs Many works have focused on the
discovery of common subgraphs from within

much larger graph datasets, which could help discover ab-
normal activities in the networks, e.g., auction fraud [70],
insider trading [71], or insider threats in a company [72]. This
explorative process requires almost no foreknowledge of the
input graph. Originally coined in [22], [23], network motifs are
common subgraphs or patterns that occur “unusually” often
in a network. Knowing the frequency of subgraphs is not
necessarily sufficient to claim that subgraphs are motifs; motifs
make a stronger claim by showing that they are statistically
more likely in a given input graph than in a random graph of
the same size.

Generating the network motifs is a computationally expen-
sive procedure involving subgraph enumeration and aspects of
graph similarity from subgraph isomorphism. Although motif
detection isn’t purely subgraph isomorphism, motif detection
approaches currently can detect motifs with dozens of nodes,
for modestly sized graphs [25].

The motif mining approach proposed by Milo et al. scans
the graph for all n-node subgraphs and then compares the
occurrence of such n-node graphs with their chance to occur in
a random-network [23]. Those subgraphs with a statiscally sig-
nificant appearance rate over the random graphs are considered
as motifs. Because this approach scans all n-node subgraphs it
quickly becomes intractable as n increases. Other approaches
have improved on the scalability of this work.

Yan et al. created gSpan, short for graph-based substructure
pattern mining, which discovers frequent graph substructures
without the need for a prebuilt candidate list [24]. gSpan
works by constructing a lexicographic ordering among graphs,
which it uses to construct a unique label; it then uses a depth-
first search strategy to efficiently mine frequent subgraphs.
Grochow et al. further improved motif detection scalability
by using subgraph enumeration and symmetry breaking [25].
Symmetry-breaking is a technique by which their algorithm
eliminates repeated subgraph isomorphism tests, leading to
exponential speedups over the earlier techniques.

Related to motif identification, recent research [26] pro-
posed to develop a vocabulary of common subgraph patterns;
(near) cliques, bipartite cores, stars, and others. A graph can



then be summarized by replacing the patterns with represen-
tative symbols for each pattern, drastically improving visual
comprehension.

D. Hybrid Graph Visualization

There are naturally several techniques and tools that com-
bine various graph visualization approaches. By offering sev-
eral views, a system can overcome the challenges that face a
single visualization.

Overview & Challenges

• How do we choose an appropriate view given a particular
graph [73]?

• How can both structure and lower-level node and edge
data be co-visualized? [18], [52]

• How can transitions between views be designed to
maximize visualization stability?

Graph visualizations with multiple levels of detail can yield a
user improvements in understanding their data, as in [74].

Offering different views also allows easier portrayal of
multivariate and other heterogeneous data. This can be seen
in [18], where both a graph summary view and a low level
multivariate flow chart give users a combination of views. In
this approach both the structural behavior of the network as
well as the multivariate node data are visualized.

Matrix Zoom [75] is a matrix view strongly coupled with a
hierarchical dataview. By offering both a zoomable matrix and
a conventional node-link representation, users can smoothly
switch to the view that’s most useful at their discretion. Henry
et al. created NodeTrix [76], a hybrid graph visualization
tool designed for social network analysis. NodeTrix uses a
connected matrix-view to capture both the sparsity and dense
communities often found in social networks.

SocialAction [3] combines structural analysis on graphs
and interactive exploration. Their multiple coordinated views
contain rankings of nodes for their statistics of structural
properties, such as betweenness centrality. These rankings
enable users to find interesting nodes systematically and guide
them where to start exploration.

III. GRAPH INTERACTION

Several works have studied the types of common graph
interactions. Lee et al. taxonomized common graph visualiza-
tion interactions in [77]. They separate low level tasks into
topological, attribute, and browsing based groups. Here, we
will discuss techniques used in graph visualization tools and
how they improve graph sensemaking.

Graph Interaction Basics User interaction in graph visu-
alizations is essential in all graph exploration tasks. Canonical
graph interaction techniques such as brushing, linking, pan-
ning, and zooming appear consistently in graph visualizations
[78], [79].

Lenses Another common approach is to pro-
vide “details on demand” through a simu-
lated lense that provides a detailed view when

placed over dense areas. Lenses have proven effective for
numerous graph applications [16], [15], [17], [18], [52].

Graph Selections There are two main meth-
ods for node and edge selection: pointer-
selection and query-selection.

In pointer-selection, the pointer is used to: manually click
to select, drag a selection, draw a selection lasso or brush
a selection. Query-selection usually uses a query language or
filtering interface to let the user specify which nodes they want
selected based on node or edge level attributes. Query-selection
can be especially useful in cases with rich multivariate node
and edge data.

Structural & Topological Navigation Topo-
logical navigation uses the graphs structure to
show and hide portions of the graph based on

the connections between nodes. Often this is used so that only
a local area of interest is displayed. This is often achieved by
only drawing direct neighbors or the egonet of a node. This
neighborhood traversal technique can be very effective means
to explore a graph using local topological jumps [19].

TreePlus [21] uses a tree structure to aid in users’ ex-
ploration of hierarchically clustered graph data. By letting
users selectively grow the hierarchy, TreePlus strikes a balance
between detail and intuition by offering excellent readability,
layout stability, and the users’ perceptions of tree structure.

In the case of networks with scale-free or near scale-free
degree distributions (and other graphs with high degree nodes),
pure topological browsing is insufficient, because drawing a
single node’s neighbors may be drawing a large portion of the
graph.

Degree of Interest Navigation A more gen-
eral method than using purely topological in-
formation is to use degree of interest to filter.

These methods use a degree of interest (DoI) function to hide
parts of the graph that are uninteresting to the user. A DoI
function evaluates the importance of nodes based on an initial
node or group of nodes and produces a ranking for related
nodes. Neighborhood traversal can be expressed as a simple
DoI function. While the DoI functions proposed originally
in [16] used a form of graph distance, other graph-attributes
can be used to capture user interest. The initial work on DoI
was extended by [17] who show the potential for using other
attributes and graph features as inputs to the DoI function. Both
of the aforementioned works operated on hierarchies, but could
be extended to general graphs.

This eventually gave rise to the notion of tuneable and
dynamic DoIs. Abello et al. created a modular DoI for large
dynamic networks; wherein they provide the user an interac-
tively defined DoI to improve a user’s ability to track critical
dynamic elements of their network [37]. The Apolo system
integrates machine learning to infer multiple types of DoIs
simultaneously [14].

The system Entourage, a tool for visualizing biological
pathways, uses contextual information provided by the user
to visualize interdependencies among pathways [20]. Once a
subset of a pathway has been selected, other pathways sharing
that subset (or elements from it) are displayed, ranked by their
similarity. By leveraging attribute information from the user-
selected nodes, Entourage provides interdependencies tuned to
the exploration habits of the user.



Modern methods for scalable data mining and machine
learning can be used to adapt DoI and other search function-
ality to a user’s tastes.

Multivariate Graphs Graph datasets often
contain rich metadata in the form of attributes
or types on nodes and edges, as graphs can

be constructed from any databases with multiple types of
entities and relationships [80]. There are a series of work for
interacting with this type of multivariate graphs.

PivotPaths [81] shows connecting entities of different types,
which allows users to navigate through edges with different
semantics. The Entourage system also supports cascades with
edges of different types. LinkedVis [82] offers users a visu-
alization of the multivariate graph data. It leverages natural
language processing to improve collaborative filtering for job
recommendation, but is driven by a user-specified profile
containing various entities from LinkedIn’s data. Allowing the
users to visually generate their own profile and directly effect
the recommendation system helps users make sense of their
recommendations.

PivotSlice [83] makes users possible to subdivide the entire
multivariate data into several parts by constructing a series of
dynamic queries.

Multi-Touch With the preponderance of mo-
bile and tablet devices, new methods for in-
terfacing with data have arisen. Using multi-

touch for rich graph interaction shows great promise.

Schmidt et al. have created a multi-touch interaction set;
this set is comprised of TouchPlucking, TouchPinning, Touch-
Strumming, TouchBundling and PushLens [84]. TouchPluck-
ing allows a user to adjust the placement of edges, Touch-
Pinning fixes a node, TouchStrumming vibrates an edge or all
neighboring edges (when a node is strummed), Touchbundling
where a user can pinch and bundle edges together, and Push-
Lens which redirects edges around the lense (excluding all
nodes and edges within the lens).

While this area is relatively new, the broad variety of
input gestures make multi-touch an impressive area for future
research. Recent research demonstrating realtime computation
on million-scale graphs on an iPad Mini [85], further suggests
that such expressive interaction may be combined with scalable
data mining algorithms to support large graph exploration on
multi-touch devices.

IV. RESEARCH DIRECTIONS

Visualization & Exploration Techniques Graph summariza-
tion whether through sampling, filtering, partitioning, cluster-
ing, or a combination often requires computationally expensive
operations many of which cannot be completed fast enough for
a real time system. Rather than relying on precomputation, new
methods for graph visualization should investigate faster solu-
tions like iteration or approximation to yield faster summary
information (e.g., edge bundling by density estimation [86]).

Global, Local & Hybrid Views Global views provide users
with an abstract view of their data and yield intuition to their
internal models, but alone these may be insufficient for all
sensemaking tasks. Many conventional graph visualizations

fall into this category. Local views provide a user with low-
level, real-time information about their graph data. They trade
global insight for greater detail and better scalability. Because
of the differences in the way we make sense of graphs, new
research will need to investigate how to combine these types
of views in ways that balance visual scalability, stability, and
comprehensibility. With the right balance, new tools and hybrid
visualizations may generalize to a broader variety of research
tasks.

Subgraph Mining Both graph querying and frequent subgraph
mining are incredibly computationally expensive processes,
which will likely require approximation to be done in real
time. Approximate graph querying lets users ask structured
queries of their graph data and receive matches from their
data; however, little work has yet to be done on the best ways
to portray both the query construction as well as the answer
response. A balance must be struck between showing detailed
results and providing intuition about where in the graph those
results came from.

Network motifs give a user a method to freely explore
the common subgraphs in their data. These patterns could be
leveraged to greatly improve the visual scalability of the graph,
but little research has been done on the best methodology
to link the summarized patterns with their reductions in the
summary graph.

Interaction A plethora of interaction approaches have been
designed to improve the ease and efficacy of many graph
visualizations. These interaction techniques rely on low latency
in order to remain smooth and visually coherent. Many graph
algorithms operate too slowly when run on a full graph,
for those which cannot be precomputed methods must be
developed that can be run iteratively with partial input or
quickly approximate based on only a portion of the graph.

With its many natural input gestures multi-touch offers
new avenues for graph interaction. Multi-touch has numerous
challenges to overcome; which gestures are appropriate for
which graph actions, which gesture types will work well with
graphs, or even which composite actions are meaningful.

Conclusion This work has surveyed the state of the art in graph
sensemaking and two of its critical components: scalability
and interaction design. By building on the work of and draw-
ing research from human-computer-interaction, information
visualization, machine learning, data mining, recommendation
systems, and information retrieval, the area of graph sense-
making has become a steadily growing research discipline.
We produced a graph sensemaking hierarchy consisting of
global, local, and hybrid views. We discussed the tools and
techniques that contribute to this hierarchy and placed them
accordingly. Based on the research we have performed and the
literature we have gathered, graph visualization research and
the broader area of graph sensemaking research are far from
their end. With so many challenging research opporunities,
graph sensemaking will continue to inspire new research and
vivid graph visualizations in the years to come.
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